Stability Analysis of Plate-Cone Reticulated Shell

2011 ◽  
Vol 71-78 ◽  
pp. 3760-3763
Author(s):  
Xing Wang

This paper carries out stability analysis on plate-cone reticulated shell considering geometrical nonlinearity of cooperating work between plates and members. In this paper, stability behavior of different kinds of plate-cone reticulated shell considering geometrical nonlinearity is analyzed by using the software ANSYS, tracking complete process balance path for load-displacement by using arc-length method, the several problems of plate-cone reticulated shell are studied, such as destruction mechanism, structural ductility, ultimate bearing capacity and strength reserve, some important conclusions are obtained. After analyzing the stability behavior of double-layer reticulated shell by ANSYS and comparing with plate-cone reticulated shell, it is proved that plate-cone reticulated shell is more advantageous than double-layer reticulated shell in the aspect of stability behavior.

2010 ◽  
Vol 163-167 ◽  
pp. 2033-2036
Author(s):  
Fan Wang ◽  
Xing Wang

Plate-cone reticulated shell is a new type of double-layer reticulated shell in which ventral members is replaced by cone elements. This paper carries out nonlinear stability bearing capacity analysis on plate-cone reticulated shell considering geometrical nonlinearity of cooperating work between plates and members. In this paper, stability bearing capacity of plate-cone reticulated shells with different kinds of structure form considering geometrical nonlinearity is analyzed by using the software ANSYS, tracking complete process balance path for load-displacement by using arc-length method, the several problems of plate-cone reticulated shell are studied, such as destruction mechanism, structural ductility, stability ultimate bearing capacity and strength reserve, some important conclusions are obtained. After analyzing the stability behavior of double-layer reticulated shell by ANSYS and comparing with plate-cone reticulated shell, it is proved that plate-cone reticulated shell is more advantageous than double-layer reticulated shell in the aspect of stability bearing capacity behavior.


2014 ◽  
Vol 578-579 ◽  
pp. 141-145
Author(s):  
Yun Ying Ma ◽  
Jin Duan ◽  
Hong Shao

In this paper, the stability analysis of a single-layer latticed shell structure is presented using ABAQUS, with the geometric nonlinearity considered. The load-displacement curves are calculated according to the elastic and elasto-plastic hypothesis respectively. The ultimate bearing capacity of the structure and its conceivable damage mode are estimated. Finally, the nonlinear stability of this structure is assecced and the further suggstions for improving the structural performance are presented.


1978 ◽  
Vol 33 (7) ◽  
pp. 792-798
Author(s):  
W. Kerner

The stability behavior with respect to internal modes is discussed for a class of tokamak equilibria with non-circular cross-sections and essentially flat current profiles. The stability analysis is done by computer both symbolically and numerically with the help of a normal mode code, which extremizes the Lagrangian of the system . It is found that the stability limit agrees well with that of the Mercier criterion. There are stable high-beta equilibria in this model.


2016 ◽  
Vol 08 (04) ◽  
pp. 1650048 ◽  
Author(s):  
M. Baghani ◽  
M. Mohammadi ◽  
A. Farajpour

It is well-known that rotating nanobeams can have different dynamic and stability responses to various types of loadings. In this research, attention is focused on studying the effects of magnetic field, surface energy and compressive axial load on the dynamic and the stability behavior of the nanobeam. For this purpose, it is assumed that the rotating nanobeam is located in the nonuniform magnetic field and subjected to compressive axial load. The nonlocal elasticity theory and the Gurtin–Murdoch model are applied to consider the effects of inter atomic forces and surface energy effect on the vibration behavior of rotating nanobeam. The vibration frequencies and critical buckling loads of the nanobeam are computed by the differential quadrature method (DQM). Then, the numerical results are testified with those results are presented in the published works and a good correlation is obtained. Finally, the effects of angular velocity, magnetic field, boundary conditions, compressive axial load, small scale parameter and surface elastic constants on the dynamic and the stability behavior of the nanobeam are studied. The results show that the magnetic field, surface energy and the angular velocity have important roles in the dynamic and stability analysis of the nanobeams.


2014 ◽  
Vol 919-921 ◽  
pp. 169-176 ◽  
Author(s):  
Ming Liang Zhu ◽  
Yan Sun

The Suspended Latticed Intersected Cylindrical Shell (SLICS) is a new structural system, composed by the single layer Latticed Intersected Cylindrical Shell (LICS) and the prestressed cable-strut system. Mechanical properties of this structure were investigated through nonlinear buckling analysis by the consistent imperfect buckling analysis method, compared with the single layer LICS. Structure parameters including prestress level, member section, length of bar, rise-span ratio, obliquity were analyzed. And the effect of material nonlinearity on the stability was studied. Results show that the ultimate bearing capacity of the SLICS is improved as the introduction of prestress. However the prestress level has a limited impact on the ultimate bearing capacity. And the material nonlinear is very important to the stability of the SLICS.


2015 ◽  
Vol 733 ◽  
pp. 464-467
Author(s):  
Yong Kang Shen ◽  
Zheng Zhong Wang ◽  
Chun Long Zhao

The new arms form of radial gate—dendritic arms is introduced for the proper mechanical mechanism, however the stability design is very difficult. According to the stability theory of structure, the stability analysis model of step column with lateral restraints was proposed for dendritic arms, some equations was derived from the principle of minimum potential energy, the practical formulas of buckling bearing capacity and effective length coefficient were provided. According to an example, the accuracy on formulas was verified by finite analysis method.


2011 ◽  
Vol 94-96 ◽  
pp. 868-871
Author(s):  
Wen Feng Du ◽  
Zhi Yong Zhou ◽  
Fu Dong Yu

Studies on the static stability and the ultimate bearing capacity of vierendeel latticed shells have been carried out. The buckling modal and the whole course of instability are shown using the Finite Element Method. The ultimate bearing capacity is compared with that of the single-layer latticed shell structure. The results show that the ultimate bearing capacity of the vierendeel latticed shells is 2.87 times more than that of the single-layer lattice shell in the condition of consuming the same steel. The vierendeel latticed shell structure not only has the advantages of concision and transparency like the single layer latticed shell structure, but also has the stability and carrying capacity like double-layer latticed shell structure.


2013 ◽  
Vol 712-715 ◽  
pp. 815-821 ◽  
Author(s):  
Yu Zhen Chang ◽  
Yong Gang Kang

A systemically study on the new space structure steel - concrete composite ribbed shell is made, which is loaded by stepped load. The ultimate bearing capacity and failure modes are investigated based on the characteristic response indicators. In the foundation of large number of parameters analysis, the influence of the span ratio, span, boundary conditions and initial imperfection on the ultimate bearing capacity and instable dynamic failure are discussed in details. All the results will provide mass of data to the investigation of failure mechanism and the property under complex dynamical loads.


2011 ◽  
Vol 243-249 ◽  
pp. 7005-7008
Author(s):  
Yu Zhen Chang ◽  
Ling Ling Wang

The steel-concrete composite ribbed shell is a new type of spatial structure. Different restrained boundary conditions have a considerably influence on the ultimate bearing capacity and stability. Based on the nonlinear finite element method, a numerical model is made by finite element analysis software ANSYS, in which material and geometrical nonlinear are considered. A spherical composite ribbed shell with 40m span, three different section dimensions and two different vector heights is used as an example, in which 4 different restrained boundary conditions are considered, including all fixed, all hinged, node fixed and node hinged. The results show that when the section dimension and span height are the same, the ultimate bearing capacity will be greater as the boundary becoming rigid, and when the section dimension is larger, the ratio of ultimate bearing capacity under different restrained boundary conditions is increasing, while as the span height is greater, the ratio is decreasing. To the instable shape, the influence of different restrained boundary is minor, all the instable modes are extreme point instability, but the trend of load-displacement curves are almost similar, and when the cross-section dimension of composite rib increases, the composite ribbed shell under different boundary constraints has shown higher post-buckling strength.


Sign in / Sign up

Export Citation Format

Share Document