Research on Heat and Mass Transfer of Flat Grooved Heat Pipes

2015 ◽  
Vol 733 ◽  
pp. 599-602
Author(s):  
Lei Cao ◽  
Guo Chang Zhao ◽  
Li Ping Song ◽  
Tian Dong Lu

Flat grooved heat pipes, which are especially useful in obtaining a high degree of temperature uniformity on flat surfaces, have been successfully used in the temperature control of electronic systems, however, the mechanisms governing the flow and heat transfer of this kind of heat pipes are still under scrutiny as some reported results cannot be reproduced by others or some assumptions have been proven to be unreasonable or ideal. The theoretical and experimental studies on flat grooved heat pipes and introduce work performed on modeling flat grooved heat pipes are reviewed in this paper.

Symmetry ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 658
Author(s):  
Hao Ma ◽  
Zhipeng Duan

Modeling fluid flows is a general procedure to handle engineering problems. Here we present a systematic study of the flow and heat transfer around a circular cylinder by introducing a new representative appropriate drag coefficient concept. We demonstrate that the new modified drag coefficient may be a preferable dimensionless parameter to describe more appropriately the fluid flow physical behavior. A break in symmetry in the global structure of the entire flow field increases the difficulty of predicting heat and mass transfer behavior. A general simple drag model with high accuracy is further developed over the entire range of Reynolds numbers met in practice. In addition, we observe that there may exist an inherent relation between the drag and heat and mass transfer. A simple analogy model is established to predict heat transfer behavior from the cylinder drag data. This finding provides great insight into the underlying physical mechanism.


Author(s):  
Huanling Liu ◽  
Bin Zhang

Abstract In this paper, we propose a new type of DL-MCHS to improve the substrate temperature uniformity of the microchannel heat sink, and conduct the optimization of the New DL-MCHS. The heat transfer and friction characteristics of the novel DL-MCHS are studied by numerical simulation. We compare the heat transfer performance the new DL-MCHS with the traditional TDL-MCHS (the DL-MCHS with truncated top channels λ = 0.38). The results prove the effectiveness of the improved design by FLUENT simulation. When the inlet velocity is kept constant and coolant is water, the heat transfer performance of the New DL-MCHS is higher than that of TDL-MCHS leading to an increase of the temperature uniformity. In order to achieving the best overall heat transfer performance, an optimization of New DL-MCHS is performed by GA (genetic algorithm).


Author(s):  
C. B. Sobhan ◽  
G. P. (Bud) Peterson

The fluid flow and heat transfer characteristics of micro heat pipes are analyzed theoretically, in order to understand the physical phenomena and quantify the influence of various parameters on overall thermal performance of these devices. A one-dimensional model is utilized to solve the governing equations for the liquid/vapor flow and the heat transfer in the heat pipe channel. Variations in the liquid and vapor cross-sectional areas along the axial length of the heat pipe are included and the equations are solved using an implicit finite difference scheme. Appropriate models for fluid friction in small passages with varying cross-sectional areas have been incorporated to yield the axial distribution of the meniscus radius of curvature and the velocity, temperature and pressure in both the liquid and the vapor phases. Using this information, the effective thermal conductivity of the micro heat pipe is modeled, and parametric studies are performed by changing the heat load and cooling rate. The results of the analysis are discussed and compared with other theoretical models and experimental results found in the literature. By so doing, this analysis provides greater insight into the physical phenomena of flow and heat transfer in micro heat pipes and identifies a methodology for optimizing the design of these devices.


Sign in / Sign up

Export Citation Format

Share Document