scholarly journals Similarities of Flow and Heat Transfer around a Circular Cylinder

Symmetry ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 658
Author(s):  
Hao Ma ◽  
Zhipeng Duan

Modeling fluid flows is a general procedure to handle engineering problems. Here we present a systematic study of the flow and heat transfer around a circular cylinder by introducing a new representative appropriate drag coefficient concept. We demonstrate that the new modified drag coefficient may be a preferable dimensionless parameter to describe more appropriately the fluid flow physical behavior. A break in symmetry in the global structure of the entire flow field increases the difficulty of predicting heat and mass transfer behavior. A general simple drag model with high accuracy is further developed over the entire range of Reynolds numbers met in practice. In addition, we observe that there may exist an inherent relation between the drag and heat and mass transfer. A simple analogy model is established to predict heat transfer behavior from the cylinder drag data. This finding provides great insight into the underlying physical mechanism.

2019 ◽  
Vol 8 (8) ◽  
pp. 1632-1639
Author(s):  
Aamir Ali ◽  
Y. Ali ◽  
D.N. Khan Marwat ◽  
M. Awais

Flow heat and mass transfer in a deformable channel of peristaltically moving walls is investigated in this paper. Moreover, the channel is filled with nanofluids. The purpose of this study is to examine the combined effects of surface deformation and peristaltic movement of the walls on the nanofluid flow in a channel. We have considered the effects of nanofluid in the peristaltically deformable porous channel whose walls are contracting or expanding in the normal direction. Nanofluids have been used to enhance the thermo-physical properties of fluids such as thermal diffusivity, thermal conductivity and convective heat transfer coefficients on flow and heat transfer. The analytic solution of the problem have been presented. We have analyzed the effects of different involved parameters such as Reynolds number, surface deformation parameter, Prandtl number, wave number, Brownian and thermophoretic diffusion parameters and Schmidt number on the velocity profile, the temperature profile, pressure distribution and the concentration profile with the help of graphs. The results are shown graphically and discussed physically. It is observed that the deformation increases the axial velocity and temperature of the fluid.


2021 ◽  
Vol 2039 (1) ◽  
pp. 012028
Author(s):  
M V Philippov ◽  
I A Chokhar ◽  
V V Terekhov ◽  
V I Terekhov ◽  
I N Baranov

Abstract This work presents an experimental study of a turbulent flow and heat transfer of an annular impinging jet for organizing effective surface cooling. Heat and mass transfer of the impinging annular jet was studied at Re = 5500. At that, a distance from the nozzle to the wall was varied. The focus was made on configurations with small nozzle-to-wall distances. It is shown that, depending on the indicated distance, fundamentally different flow regimes with characteristic features of heat transfer distribution are observed.


Author(s):  
Vincent M. Bulinda ◽  
Giterere P. Kang’ethe ◽  
Phineas R. Kiogora

Analysis of magnetohydrodynamics flow of incompressible fluids over an oscillating bottom surface with heat and mass transfer is discussed. The flow is free convection in nature. Momentum, energy, and concentration equations are obtained for computation of their respective profiles. The unsteady flow two-dimensional governing equations are solved numerically by the explicit finite difference method of the Forward Time Backward Space scheme. The numerical results show that the applied parameters have significant effects on the fluid flow and heat transfer and have been discussed with the help of graphical illustrations.


Processes ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 702
Author(s):  
Ramanahalli Jayadevamurthy Punith Gowda ◽  
Rangaswamy Naveen Kumar ◽  
Anigere Marikempaiah Jyothi ◽  
Ballajja Chandrappa Prasannakumara ◽  
Ioannis E. Sarris

The flow and heat transfer of non-Newtonian nanofluids has an extensive range of applications in oceanography, the cooling of metallic plates, melt-spinning, the movement of biological fluids, heat exchangers technology, coating and suspensions. In view of these applications, we studied the steady Marangoni driven boundary layer flow, heat and mass transfer characteristics of a nanofluid. A non-Newtonian second-grade liquid model is used to deliberate the effect of activation energy on the chemically reactive non-Newtonian nanofluid. By applying suitable similarity transformations, the system of governing equations is transformed into a set of ordinary differential equations. These reduced equations are tackled numerically using the Runge–Kutta–Fehlberg fourth-fifth order (RKF-45) method. The velocity, concentration, thermal fields and rate of heat transfer are explored for the embedded non-dimensional parameters graphically. Our results revealed that the escalating values of the Marangoni number improve the velocity gradient and reduce the heat transfer. As the values of the porosity parameter increase, the velocity gradient is reduced and the heat transfer is improved. Finally, the Nusselt number is found to decline as the porosity parameter increases.


Author(s):  
Yao Li ◽  
Haiqing Si ◽  
Jingxuan Qiu ◽  
Yingying Shen ◽  
Peihong Zhang ◽  
...  

Abstract The plate-fin heat exchanger has been widely applied in the field of air separation and aerospace due to its high specific surface area of heat transfer. However, the low heat transfer efficiency of its plate bundles has also attracted more attention. It is of great significance to optimize the structure of plate-fin heat exchanger to improve its heat transfer efficiency. The plate bundle was studied by combining numerical simulation with experiment. Firstly, according to the heat and mass transfer theory, the plate bundle calculation model of plate-fin heat exchanger was established, and the accuracy of the UDF (User-Defined Functions) for describing the mass and heat transfer was verified. Then, the influences of fin structure parameters on the heat and mass transfer characteristics of channel were discussed, including the height, spacing, thickness and length of fins. Finally the influence of various factors on the flow field performance under different flow states was integrated to complete the optimal design of the plate bundle.


Author(s):  
Boming Yu

In the past three decades, fractal geometry and technique have received considerable attention due to its wide applications in sciences and technologies such as in physics, mathematics, geophysics, oil recovery, material science and engineering, flow and heat and mass transfer in porous media etc. The fractal geometry and technique may become particularly powerful when they are applied to deal with random and disordered media such as porous media, nanofluids, nucleate boiling heat transfer. In this paper, a summary of recent advances is presented in the areas of heat and mass transfer in fractal media by fractal geometry technique. The present overview includes a brief summary of the fractal geometry technique applied in the areas of heat and mass transfer; thermal conductivities of porous media and nanofluids; nucleate boiling heat transfer. A few comments are made with respect to the theoretical studies that should be made in the future.


Sign in / Sign up

Export Citation Format

Share Document