Evaluation on Dynamic Responses of Transmission Lines Subjected to Wind Excitations

2015 ◽  
Vol 744-746 ◽  
pp. 82-87
Author(s):  
Peng Yun Li ◽  
Bo Chen ◽  
Wen Ping Xie ◽  
Hao Liu

The evaluation on dynamic responses of transmission lines subjected to wind excitations is actively carried out in this study. A transmission tower-line system constructed in the southern coastal areas of China is taken as example to examine the wind induced response of the transmission lines. The structural model is established based on finite element approach by using commercial package. The displacement, velocity and acceleration responses of the transmission lines are computed to explore structural performance. The made observations indicate that the transmission lines vibrant substantially when subjected to strong winds. It is obvious that the dynamic responses of the ground wire are smaller than those of the wire and the responses in the long span are much larger than those in the short span.

2013 ◽  
Vol 671-674 ◽  
pp. 650-654
Author(s):  
Peng Yun Li ◽  
Bo Chen ◽  
Yu Zhou Sun

The field inspection and safety assessment of a transmission angle tower are actively carried out in this study. The field measurement and inspection are firstly introduced and then the structural model is constructed based on finite element approach with the aiding of commercial package ANSYS. The equation of motion of the transmission tower-line system is established for numerical analysis. The gravity, base settlement and dynamic wind loading are applied on the tower to examine the structural responses. The deformation and stresses distribution of the transmission angle tower are computed to explore the damage reasons. The made observations indicate that the peak stresses of some members are large than the permitted yielding stresses of steel material. The damage event is induced by coupling loading effects


2014 ◽  
Vol 678 ◽  
pp. 587-590
Author(s):  
Yi Jiang Wu ◽  
Bo Chen ◽  
Gan Jun Wang ◽  
Qing Jiang Chen

The dynamic response analysis of a transmission angle tower subjected to wind excitations is actively carried out in this study. The structural model is constructed based on finite element approach with the aiding of commercial package ANSYS. The equation of motion of the transmission tower-line system under wind excitations is established. The dynamic wind loading are applied on the tower-line system to examine the structural responses. The deformation and stresses distribution of the transmission angle tower are computed to explore the structural performance. The made observations indicate that the peak stresses of some members are large than the permitted yielding stresses of steel material.


2015 ◽  
Vol 744-746 ◽  
pp. 248-252
Author(s):  
Wen Ping Xie ◽  
Bo Chen ◽  
Peng Yun Li ◽  
Xiao Fen Gong

The research on dynamic responses of a transmission tower under monsoon wind is actively carried out in this study. A real transmission tower-line system constructed in the southern coastal areas of China is taken as an example to investigate the structural performance subjected to monsoon wind. The finite element model of the transmission tower-line system is established with the aiding of commercial package. The equation of motion of the transmission tower-line system under monsoon wind is established. The dynamic wind loading are applied on the tower-line system to examine the structural responses.


2013 ◽  
Vol 7 (1) ◽  
pp. 159-163 ◽  
Author(s):  
Li Tian ◽  
Qian Wang ◽  
Qiqi Yu ◽  
Nuwen Xu

In this paper, tuned mass dampers with optimal parameters for long span transmission tower-line system are investigated. Equations of motion for a structure-TMD system are derived, and the parameters of TMD, stiffness and damping are optimized, respectively. According to a real project, three-dimensional finite element models of both transmission tower and transmission tower-line system are created and their vibration performances are analyzed using SAP2000 software, respectively. Wind load time history is simulated based on wind theory. Using numerical simulation, vibration control with optimal tuned mass damper installed in transmission tower-line system is carried out. Time history curves and the maximum responses of system without and with tuned mass damper under wind excitation are analyzed and discussed. The results show that the optimal tuned mass damper could effectively decrease the wind-induced response of long span transmission tower-line system.


2010 ◽  
Vol 10 (03) ◽  
pp. 461-481 ◽  
Author(s):  
FENGLI YANG ◽  
JINGBO YANG ◽  
JUNKE HAN ◽  
DONGJIE FU

Ice shedding from conductors may easily induce electrical and mechanical accidents, which cause a serious threat to the safe operation of transmission lines. In this paper, a 3D finite element model of tower-conductor-ground wire-insulator system was established in ANSYS, and the dynamic responses of ice shedding under different cases were analyzed for a transmission tower-line system. The computed jumping heights are in excellent agreement with the experimental values of a two span conductors model. Many variables were considered in the ice-shedding simulations that include tower-line coupled effect, phase combination of the ice-shedding conductors, thickness of the accreted ice, length of the ice-shedding span as well as elevation difference. Influences of all the variables on the dynamic responses of jumping heights, loads at the end of insulators and the forces of transmission tower were studied. Ice-shedding simulations of an actual 500 kV transmission line section which experience failure under ice shedding in 2008 were performed. The results show that stress ratios of members at the tower head under design ice thickness exceed the limiting values when the amount of shedding ice is large. For ice shedding at the top phase conductors, the jumping height and unbalanced tension at the end of insulator can be reduced by applying interphase spacers in triangular arrangement. The tower is in a safe state under the load of the design ice thickness. In order to prevent ice-shedding accidents, interphase spacers should be used, and the weak members at the tower head should be strengthened according to the calculated load values at the end of insulators.


2014 ◽  
Vol 687-691 ◽  
pp. 3423-3426 ◽  
Author(s):  
Xiao Dong Feng ◽  
Feng Ren Fu ◽  
Tong Chen Miao ◽  
Yong Xing Lai ◽  
Xian Fa Wang

In this paper, according to the structure character of transmission tower, the transmission lines are simulated as link10 space spar elements which have the unique feature of a bilinear stiffness matrix resulting in a uniaxial tension-only (or compression-only) elements and the transmission tower are simulated as space element beam188 and link 8. So the ANSYS fine finite element models of transmission tower-line system which are more agrees with engineering practices are set up, dynamic characteristics are calculated on nine conditions and the influences of transmission line on dynamic characteristics of the transmission tower are discussed, some valuable conclusions are given.


2021 ◽  
pp. 136943322110339
Author(s):  
Jian Guo ◽  
Changliang Xiao ◽  
Jiantao Li

A hill with a lattice transmission tower presents complex wind field characteristics. The commonly used computational fluid dynamics (CFD) simulations are difficult to analyze the wind resistance and dynamic responses of the transmission tower due to structural complexity. In this study, wind tunnel tests and numerical simulations are conducted to analyze the wind field of the hill and the dynamic responses of the transmission tower built on it. The hill models with different slopes are investigated by wind tunnel tests to measure the wind field characteristics, such as mean speed and turbulence intensity. The study shows that the existence of a transmission tower reduces the wind speed on the leeward slope significantly but has little effect on the windward slope. To study the dynamic behavior of the transmission tower, a hybrid analysis procedure is used by introducing the measured experimental wind information to the finite element tower model established using ANSYS. The effects of hill slope on the maximum displacement response of the tower are studied. The results show that the maximum value of the response is the largest when the hill slope is 25° compared to those when hill slope is 15° and 35°. The results extend the knowledge concerning wind tunnel tests on hills of different terrain and provide a comprehensive understanding of the interactive effects between the hill and existing transmission tower regarding to the wind field characteristics and structural dynamic responses.


2021 ◽  
Vol 9 ◽  
Author(s):  
Jiaxiang Li ◽  
Biao Wang ◽  
Jian Sun ◽  
Shuhong Wang ◽  
Xiaohong Zhang ◽  
...  

Ice shedding causes transmission lines to vibrate violently, which induces a sharp increase in the longitudinal unbalanced tension of the lines, even resulting in the progressive collapse of transmission towers in serious cases, which is a common ice-based disaster for transmission tower-line systems. Based on the actual engineering characteristics of a 500 kV transmission line taken as the research object, a finite element model of a two-tower, three-line system is established by commercial ANSYS finite element software. In the modeling process, the uniform mode method is used to introduce the initial defects, and the collapse caused by ice shedding and its influencing parameters are systematically studied. The results show that the higher the ice-shedding height is, the greater the threat of ice shedding to the system; furthermore, the greater the span is, the shorter the insulator length and the greater the dynamic response of the line; the impact of ice shedding should be considered in the design of transmission towers.


2020 ◽  
Vol 23 (10) ◽  
pp. 2110-2120
Author(s):  
Li Tian ◽  
Xin Zhang ◽  
Xing Fu

Numerous transmission towers have collapsed due to experiencing strong winds; therefore, the purpose of this article is to investigate the collapse mechanism and the anti-collapse performance of a long-span transmission tower–line system. The detailed finite element model of a typical tower–line system is established in ABAQUS. A global damage index is proposed to quantitatively estimate the overall damage of the structure and define the collapse criteria. An incremental dynamic analysis is performed to obtain the collapse mechanism and the ultimate capacity of the structure. Subsequently, a fragility analysis for evaluating the anti-collapse performance is conducted due to the uncertainty of wind loads. Eventually, the influence of the wind attack angle and the length of the side spans on the fragility is discussed. The results demonstrate that the proposed global damage index is capable of quantitatively reflecting the overall damage and assessing the ultimate capacity of the structure. In addition, the uncertainty of the wind load has a significant influence on the ultimate capacity and the failure position. Furthermore, the results reveal that the wind attack angle and the length of the side spans have an apparent effect on the fragility of the structure.


2014 ◽  
Vol 501-504 ◽  
pp. 823-826
Author(s):  
Liang Wang ◽  
Wei Lian Qu ◽  
Bai Feng Ji ◽  
Yi Fei Wang ◽  
Jun Ping Chen

To the Yangtze River a long-span transmission tower as an example, this paper makes a comparative analysis on the davenport wind spectrum and kaman wind spectrum, using two different wind spectrum calculation of wind-induced response of the structure. Obtained the conclusions that kaman wind spectrum of considering vertical correlation get greater wind-induced response in a large span transmission tower engineering.


Sign in / Sign up

Export Citation Format

Share Document