Characteristics and Properties of Reinforced Oil Palm Frond Fibers (OPFF) in Polyvinyl Alcohol (PVA) Composite for Tubular-Shaped Trays

2015 ◽  
Vol 751 ◽  
pp. 3-8
Author(s):  
Nawapon Sukudom ◽  
Lerpong Jarupan

Effects on characteristics and mechanical properties of oil palm frond fiber (OPFF) as a reinforced element in poly vinyl alcohol (PVA) were investigated in this study. Series of different loading of OPFF were prepared by the following compositions: 5, 10, 15, 20 and 25 part per resin (phr). Glycerol at 35 phr was also compounded using twin-screw extruder to decrease degree of crystallinity and to reduce shear force of PVA to improve the processability. Injection molding was used to produce specimen for testing. The results indicated that the OPFF has an impact on mechanical properties of the composite material. Different scanning calorimeter (DSC) showed that the melting temperature (Tm) of OPFF reinforced PVA blended with glycerol was shifted to having decrease when compared to the pure PVA. Different loading contents of OPFF indicated that the compressive strength and morphological properties performed by a similar fashion. A highest compressive strength and the modulus of OPFF-reinforced PVA at 25 phr were achieved. Scanning electron microscope (SEM) indicated that OPFF-reinforced PVA at 25 phr yielded no accumulation of OPFF fibers but showed the dispersion in the matrix phase. In conclusion, the OPFF derived from oil palm industry can be used as reinforcement for manufacturing of plant pot in the future stage

2012 ◽  
Vol 506 ◽  
pp. 607-610 ◽  
Author(s):  
N. Thongjun ◽  
Lerpong Jarupan ◽  
Chiravoot Pechyen

Oil palm frond pulp (OPF) was blended with activated carbon for the purpose of active packaging in this preliminary study. It was aimed to investigate the effect of in-situ activated carbon on physical and mechanical properties of the pulp handsheets made from OPF. Testing of property performances of the resulted handsheets included density, moisture content, thickness swelling, folding, tensile strength, %elongation, stiffness, and modulus of rupture. Ultimately, the intention is to use for prospected active packaging for fresh produce. OPF pulp was prepared by the kraft process. The pulp stock was mixed with different proportions of activated carbon (0, 10, 20, and 30% w/w). The results showed that an increased proportion of activated carbon decreased density and thickness selling, but had no effect on moisture content.


2019 ◽  
Vol 1 (2) ◽  
pp. 47-53
Author(s):  
Seno Aji ◽  
Teguh Satria Mahlindo ◽  
Sari Anggraini

This study aimed to determine the effect of oil palm fronds addition as a mixture to the mechanical properties of bricks in terms of porosity testing, and compressive strength, and to determine the proper percentage of oil palm frond additions. This research is a type of experiment with a randomized block design (RBD) arranged non-factorial and the data is processed using the SPSS 20 Tukey test program. This study used a brick-shaped sample with a length of 19 cm, a width of 9.5 cm and a height of 4.5 cm. Variations in the composition of the added oil palm fronds are 0%, 5%, 10%, 15%, and 20%. Parameter mechanical properties of bricks included porosity, and compressive strength tests. The addition of oil palm fronds with a composition percentage of 0% to 10% affected the mechanical properties of the bricks by reducing porosity and increasing the compressive strength of the bricks. Based on the test results obtained by each of the best test values, namely the minimum porosity value achieved in the percentage of oil palm fronds as much as 10%, which is 18.4%. The optimum compressive strength value is achieved on the percentage of oil palm fronds as much as 10% which is equal to 20.5 N / mm².


2012 ◽  
Vol 626 ◽  
pp. 716-720
Author(s):  
Pongpat Sukhavattanakul ◽  
Lerpong Jarupan ◽  
Chiravoot Pechyen

Cellulose was derived from cotton fabric waste. Composites of microcellulose fibers (MC) and isotactic polypropylene (i-PP) was prepared by melting and mixing, and maleic anhydride grafted polypropylene (MA-g-PP) was used as compatibilizer. The MC was blended in different ratios up to 20 phr with i-PP using corotating twin-screw compounder and then a forming of trays was done by injection molding. Effects of MC on mechanical properties of i-PP were investigated. Changes in mechanical and morphological properties with different MC loading were discussed. The composite of i-PP/MA-g-PP/MC rendered better results in comparison with the i-PP/MC composite. The compressive strength and modulus of i-PP/MC composites increased with the addition of 20 phr MC. The i-PP/MA-g-PP/MC-20phr composites showed higher compressive strength and modulus than the i-PP/MC-20 phr without MA-g-PP due to increased interfacial interaction between MC and i-PP matrix. Thermal properties of i-PP/MC composites with and without MA-g-PP were not significantly different from pure i-PP. In conclusion, MC derived from cotton fabric waste could be used as a reinforcing agent for manufacturing thermoplastic.


1998 ◽  
Vol 39 (3-4) ◽  
pp. 161-172 ◽  
Author(s):  
H. D. Rozman ◽  
H. Ismail ◽  
R. M. Jaffri ◽  
A. Aminullah ◽  
Z. A. Mohd Ishak

2018 ◽  
Vol 21 (1) ◽  
pp. 125-133 ◽  
Author(s):  
Nawapon Sukudom ◽  
Piyawanee Jariyasakoolroj ◽  
Lerpong Jarupan ◽  
Kittichai Tansin

Author(s):  
Beatrice Dimah Richard ◽  
◽  
Azizah Wahi ◽  
Rozie Nani ◽  
Elisha Iling ◽  
...  

Author(s):  
Farah Nora Aznieta Abdul Aziz ◽  
Sani Mohammed Bida ◽  
Noor Azline Mohd Nasir ◽  
Mohd Saleh Jaafar

Various research studies have been conducted in an effort to improve the mechanical properties of concretes and mortars containing waste tire particles using chemicals and additives which lead to increase cost. This approach presents an economical and sustainable method, through adding oil palm fruit fiber (OPFF) at 0.5%, 1%, and 1.5% by mass of cement content into the matrix and pre-treating the tire crumb aggregate (0-40%) by volume with cement, in order to improve the properties of the composite. Density, compressive strength and water absorption measurements were conducted on the mortar specimens. Results showed the addition of 0.5% OPFF in 10% treated tire crumb mortar was discovered to give the best improvement in the compressive strength of mortar modified with treated tire crumb.


2015 ◽  
Vol 802 ◽  
pp. 225-230
Author(s):  
Farah Noor Abdul Aziz ◽  
Sani Mohammed Bida ◽  
Noor Azline Mohd Nasir ◽  
Nor Azizi Safiee ◽  
Mohd Saleh Jaafar

Addition or replacement of waste tyre in mortars and concretes in lightweight aggregate concrete composites are popular in concrete material research although the mechanical properties of the composite are reduced. Various research studies have been conducted in an effort to improve the mechanical properties of concretes and mortars containing waste tyre particles using chemicals and additives which lead to increase cost. This approach presents an economical and sustainable method, through adding oil palm fruit fibre (OPFF) at 0.5, 1%, and 1.5% by mass of cement content into the matrix and pre-treating the tyre crumb aggregate (0-40%) by volume with cement, in order to improve the properties of the composite. Mechanical properties including compressive strength, split tensile strength and flexural strength were measured on the mortar specimens. Results showed the addition of 0.5% OPFF in 10% treated tyre crumb mortar gives the best improvement in the mechanical strengths of mortar modified with treated tyre crumb.


Author(s):  
F S Hashim ◽  
H W Yussof ◽  
M A K M Zahari ◽  
R A Rahman ◽  
R M Illias

Sign in / Sign up

Export Citation Format

Share Document