Structures and Properties of Isotactic-Polypropylene/Synthesized Micro Cellulose Tray: Effects of Micro Cellulose Loading

2012 ◽  
Vol 626 ◽  
pp. 716-720
Author(s):  
Pongpat Sukhavattanakul ◽  
Lerpong Jarupan ◽  
Chiravoot Pechyen

Cellulose was derived from cotton fabric waste. Composites of microcellulose fibers (MC) and isotactic polypropylene (i-PP) was prepared by melting and mixing, and maleic anhydride grafted polypropylene (MA-g-PP) was used as compatibilizer. The MC was blended in different ratios up to 20 phr with i-PP using corotating twin-screw compounder and then a forming of trays was done by injection molding. Effects of MC on mechanical properties of i-PP were investigated. Changes in mechanical and morphological properties with different MC loading were discussed. The composite of i-PP/MA-g-PP/MC rendered better results in comparison with the i-PP/MC composite. The compressive strength and modulus of i-PP/MC composites increased with the addition of 20 phr MC. The i-PP/MA-g-PP/MC-20phr composites showed higher compressive strength and modulus than the i-PP/MC-20 phr without MA-g-PP due to increased interfacial interaction between MC and i-PP matrix. Thermal properties of i-PP/MC composites with and without MA-g-PP were not significantly different from pure i-PP. In conclusion, MC derived from cotton fabric waste could be used as a reinforcing agent for manufacturing thermoplastic.

2015 ◽  
Vol 751 ◽  
pp. 3-8
Author(s):  
Nawapon Sukudom ◽  
Lerpong Jarupan

Effects on characteristics and mechanical properties of oil palm frond fiber (OPFF) as a reinforced element in poly vinyl alcohol (PVA) were investigated in this study. Series of different loading of OPFF were prepared by the following compositions: 5, 10, 15, 20 and 25 part per resin (phr). Glycerol at 35 phr was also compounded using twin-screw extruder to decrease degree of crystallinity and to reduce shear force of PVA to improve the processability. Injection molding was used to produce specimen for testing. The results indicated that the OPFF has an impact on mechanical properties of the composite material. Different scanning calorimeter (DSC) showed that the melting temperature (Tm) of OPFF reinforced PVA blended with glycerol was shifted to having decrease when compared to the pure PVA. Different loading contents of OPFF indicated that the compressive strength and morphological properties performed by a similar fashion. A highest compressive strength and the modulus of OPFF-reinforced PVA at 25 phr were achieved. Scanning electron microscope (SEM) indicated that OPFF-reinforced PVA at 25 phr yielded no accumulation of OPFF fibers but showed the dispersion in the matrix phase. In conclusion, the OPFF derived from oil palm industry can be used as reinforcement for manufacturing of plant pot in the future stage


e-Polymers ◽  
2003 ◽  
Vol 3 (1) ◽  
Author(s):  
Koh-hei Nitta ◽  
Yoshikazu Yamamoto

Abstract We examined mechanical and morphological properties of fully transcrystalline polypropylene grown from the surface of poly(tetrafluoroethylene) sheets. Comparison of mechanical properties between transcrystalline and spherulitic polypropylenes demonstrated that Young’s modulus is dependent on the crystallinity and independent of the supermolecular structure. On the other hand, the mechanical yielding process was predominantly affected by the supermolecular structure, and the mechanical energy required for yielding of transcrystalline sheets was greater than that of the spherulitic morphology. In addition, it was found that mechanical necking is required for the alignment of lamellae in the stretching direction. This means that the unfolding process of lamellae orienting in the stretching direction is associated with necking and ductility.


Author(s):  
Ali J Salman ◽  
Ali Assim Al-Obaidi ◽  
Dalya H Al-Mamoori ◽  
Lina M Shaker ◽  
Ahmed A Al-Amiery

Abstract The polyurethane (PU) has been showing a dramatic increase in applications related to material science and technology. However, the mechanical, physical and thermal properties could be further improved by loading PU with zirconia (Zr) to create renewable materials known as polyurethane–zirconia (PUZ) composites. In this study, PU matrix was treated with wt.% Zr at 0.5, 1.0, 1.5 and 2.0. In this study, the thermo-mechanical properties and the morphology were investigated of PU and PUZ nano-samples. The images of the scanning electron microscope (SEM) were the prime tool in investigating PU and PUZ surfaces and fractured surfaces showing vanishing the cracks and formation of agglomeration on the sample PUZ-1.5%. In addition, the tensile strength, Young’s modulus and maximum loading were improved by 36.7, 31.8 and 39.1%, respectively, at Zr loading of 1.5 wt.%. The flexural stress and the load were improved by 94.3% and 93.6%, respectively, when Zr loading was 1.5 wt.%. The impact without and with a notch was improved by 110.7% and 62.6%, respectively, at Zr loading of 1.5 wt.%. The the morphologies of the PU surface and Zr surface supported by SEM images. Regarding the storage modulus ability of PU and PUZ composites, Zr loading has negatively influenced E. The E functioning temperature was observed to move from 142 to 183°C. Another effect was determined by adding a small amount of Zr. This small amount was enough to shift the crystallization temperature (${T}_c$) and the melting temperature (${T}_m$) of PU from 125 to 129°C and from 150 to 144°C, respectively.


2011 ◽  
Vol 366 ◽  
pp. 310-313
Author(s):  
Ming Tao Run ◽  
Meng Yao ◽  
Bing Tao Xing ◽  
Wen Zhou

The rheology, morphology and mechanical properties of the PA6/PP-g-MAH/POE blends prepared by twin-screw extruder were studied by rheometer, scanning electron microscopy, universal tester and impact tester, respectively. The results suggest that the impact strength is improved by the POE acting as a toughening agent, while the compatibility of PA6 and POE is improved by the compatibilizer of PP-g-MAH. Furthermore, the PP-g-MAH component also acts as a reinforcing agent for decreasing the strength depression induced by the POE component. When POE content is about 9 wt% and PP-g-MAH content is about 10% in blends, the blend has the maximum tensile strength and impact strength. All melts of PA6/PP-g-MAH/POE blends are pseudo-plastic fluids. Both the POE and PP-g-MAH components can increase the apparent viscosity of the melt due to their facility of the linear molecular.


2015 ◽  
Vol 735 ◽  
pp. 70-74
Author(s):  
Ibrahim Mohammed Inuwa ◽  
Azman Hassan ◽  
Sani Amril Samsudin

This work investigates the effect of compatibilizer concentration on the mechanical properties of compatibilized polyethylene terephthalate (PET) /polypropylene (PP) blends. A blend containing 70 % (wt) PET, 30 % (wt) PP and 5 - 15 phr compatibilizers were compounded using counter rotating twin screw extruder and fabricated into standard test samples using injection molding. The compatibilizer used is styrene-ethylene-butylene-styrene grafted maleic anhydride triblock copolymer (SEBS-g-MAH). Morphological studies show that the particle size of the dispersed PP phase is dependent on the compatibilizer content up to 10 phr. Impact strength and elongation at break showed maximum values with the addition of 10 phr SEBS-g-MAH and a corresponding decrease in flexural and young’s moduli; and strengths.. Overall the mechanical properties of PET/PP blends depend on the control of the morphology of the blend and can be achieved by effective compatibilization using 10 phr SEBS-g-MAH.


2015 ◽  
Vol 1119 ◽  
pp. 283-287
Author(s):  
Sarit Liprapan ◽  
Thumnoon Nhujak ◽  
Pranut Potiyaraj

The objective of this study is to prepare α-cellulose reinforced poly (butylene succinate) composites (PBS/α-cellulose). The effect of amount α-cellulose on the mechanical properties of the composites was investigated. To improve interfacial interaction between PBS and α-cellulose, glycidyl methacrylate grafted poly (butylene succinate) (PBS-g-GMA) was used as a compatibilizer. Mechanical properties of PBS composites prepared by using a twin-screw extruder were investigated. The mechanical properties of PBS/α-cellulose decreased due to the agglomeration of α-cellulose. Nevertheless, tensile strength, Young’s modulus and flexural strength of PBS composites were improved after the incorporation of PBS-g-GMA. The optimum loading of PBS-g-GMA and α-cellulose in the PBS was found to be 5 and 6 phr.


2014 ◽  
Vol 931-932 ◽  
pp. 68-72
Author(s):  
Komsun Temna ◽  
Nitinart Saetung ◽  
Anuwat Saetung

In this work, the sponge rubbers based on cassava starch masterbatch in latex phase with the difference technique (non-gelatinized and gelatinized cassava starch) were preformed. The cassava starch contents from 0 to 70 phr were also studied. The cure characteristic, mechanical and morphological properties were investigated. It was found that the scorch time and cure time were increased with an increasing of cassava starch contents in both techniques. The mechanical properties i.e., tensile strength, elongation at break and tear strength were decreased with an increasing of cassava starch contents, except 500% modulus. However, the sponge based on gelatinized technique gave the better mechanical properties than that of non-gelatinized cassava starch. The SEM micrographs of sponge NR from gelatinized technique were also able to confirm a good interfacial interaction between hydrophilic cassava starch and hydrophobic NR.


2018 ◽  
Vol 26 (2(128)) ◽  
pp. 26-31 ◽  
Author(s):  
Munir Hussain ◽  
Feichao Zhu ◽  
Feichao Zhu ◽  
Bin Yu ◽  
Bin Yu ◽  
...  

The thermal properties and morphological characterisation of isotactic polypropylene (iPP) homopolymer and its blends with low molecular low modulus polypropylene (LMPP) were studied. Firstly blends were prepared with variant LMPP contents, and their properties were characterised using SEM, DSC, XRD, and DMA. Later the mechanical properties of iPP/LMPP blend fibres were investigated. SEM results showed that the iPP/LMPP blends produced smoother surfaces when the LMPP content was increased, as well as the miscibility. All the Tg values with different LMPP percentages were in-between pure iPP and LMPP. The XRD results indicated the LMPP percentage decreased along with the degree of crystallinity of the iPP/LMPP blends (5% to 15%), which increased and then decreased as compared to pure iPP. The elongation at break increased when the LMPP content increased, with the maximum breaking elongation of the LMPP 25% blend reaching 12.95%, which showed great stretch-ability, whereas the elastic modulus of iPP/LMPP blends decreased.


2020 ◽  
Vol 13 (1) ◽  
pp. 32-38
Author(s):  
J. C. AMARAL JR ◽  
W. G. MORAVIA

Abstract Concrete is one of the materials most used by the construction industry. Reinforcing this material with fibers is a technique used to improve its mechanical properties. Steel and polymer fibers are the main types used in this application and there are few studies about the influence of polymer fibers on the thermal properties of concrete. In order to analyze this influence, the present work carried out thermal conductivity, thermal expansion, and compressive strength after exposure to a temperature of 200 °C on specimens made of concrete with addition of polypropylene (PP) fibers and concrete with addition of high modulus polyethylene (HMPE). It was also conducted thermogravimetric analysis (TGA) on PP and HMPE fibers. The results show that the addition of polymer fibers alters the thermal properties of the concrete, reducing its thermal expansion, for example.


2016 ◽  
Vol 840 ◽  
pp. 91-96 ◽  
Author(s):  
Bashree Abu Bakar ◽  
Mohamad Najmi Masri ◽  
Mohd Hazim Mohamad Amini ◽  
Mazlan Mohamed ◽  
Muhammad Azwadi Sulaiman ◽  
...  

Wood plastic composites (WPC) have been produced by compounding meranti wood flour (WF) with polypropylene (PP) copolymer using a twin-screw extruder. The meranti WF content was varied from 30 to 60 wt.%. The mechanical properties, i.e. tensile, flexural and impact of the composites were determined on injection-molded specimens. The tensile fractured surfaces were used to study the morphological properties of the composites. The result shows that the increment in WF content has given a significant improvement in modulus properties but at the expense of strength and toughness properties. A commercial maleic anhydride grafted polypropylene (MAPP) compatibilizer at 5 wt.% was incorporated into the PP40/WF60 formulation. The strength, stiffness and toughness properties were improved significantly in the presence of MAPP. The morphology of the composites was studied by scanning electron microscopy (SEM). The improvement of the fibre-matrix adhesion between the WF and PP matrix as revealed by SEM is believed to be one of the major reasons for the improved mechanical properties.


Sign in / Sign up

Export Citation Format

Share Document