scholarly journals Effect of Fiber Loading on Mechanical Properties of Oil Palm Frond/Urea Formaldehyde (OPF/UF) Composite

Author(s):  
Beatrice Dimah Richard ◽  
◽  
Azizah Wahi ◽  
Rozie Nani ◽  
Elisha Iling ◽  
...  
2012 ◽  
Vol 506 ◽  
pp. 607-610 ◽  
Author(s):  
N. Thongjun ◽  
Lerpong Jarupan ◽  
Chiravoot Pechyen

Oil palm frond pulp (OPF) was blended with activated carbon for the purpose of active packaging in this preliminary study. It was aimed to investigate the effect of in-situ activated carbon on physical and mechanical properties of the pulp handsheets made from OPF. Testing of property performances of the resulted handsheets included density, moisture content, thickness swelling, folding, tensile strength, %elongation, stiffness, and modulus of rupture. Ultimately, the intention is to use for prospected active packaging for fresh produce. OPF pulp was prepared by the kraft process. The pulp stock was mixed with different proportions of activated carbon (0, 10, 20, and 30% w/w). The results showed that an increased proportion of activated carbon decreased density and thickness selling, but had no effect on moisture content.


2015 ◽  
Vol 751 ◽  
pp. 3-8
Author(s):  
Nawapon Sukudom ◽  
Lerpong Jarupan

Effects on characteristics and mechanical properties of oil palm frond fiber (OPFF) as a reinforced element in poly vinyl alcohol (PVA) were investigated in this study. Series of different loading of OPFF were prepared by the following compositions: 5, 10, 15, 20 and 25 part per resin (phr). Glycerol at 35 phr was also compounded using twin-screw extruder to decrease degree of crystallinity and to reduce shear force of PVA to improve the processability. Injection molding was used to produce specimen for testing. The results indicated that the OPFF has an impact on mechanical properties of the composite material. Different scanning calorimeter (DSC) showed that the melting temperature (Tm) of OPFF reinforced PVA blended with glycerol was shifted to having decrease when compared to the pure PVA. Different loading contents of OPFF indicated that the compressive strength and morphological properties performed by a similar fashion. A highest compressive strength and the modulus of OPFF-reinforced PVA at 25 phr were achieved. Scanning electron microscope (SEM) indicated that OPFF-reinforced PVA at 25 phr yielded no accumulation of OPFF fibers but showed the dispersion in the matrix phase. In conclusion, the OPFF derived from oil palm industry can be used as reinforcement for manufacturing of plant pot in the future stage


2011 ◽  
Vol 471-472 ◽  
pp. 55-58
Author(s):  
Faizah Muhamad Fauzi ◽  
Suhaimi Muhammed

Shortage of solid wood supply as the main raw material for the wood-based industries is cute problem faced by the world wide wood industry. Agricultural residues especially from oil palm plantation are abundantly and is therefore hoped to solve the above problem. In this context, this study would like to venture into the utilization of oil palm frond (OPF) as the potential agricultural residues for the manufacture of biocomposite panel. Raw material (OPF) mixed with the binder urea formaldehyde at three resin levels (8%, 10%, and 12%) to produce board of two density levels (550 kg/m3 and 650 kg/m3). The boards produced were tested for the mechanical strength (MOE & MOR) in accordance with the European Standard (EN 310). The results showed that the MOE values increased as the resin content increased for both board densities. The values are 1755.54 MPa to 2147.44 MPa for 550 kg/m3 and 2351.81 MPa to 2810.34 MPa for 650 kg/m3. Respectively, similar trend of increment was exhibited for the MOR values 12.18 MPa to 14.98 MPa for 550 kg/m3 and 16.62 MPa to 19.90 MPa for 650 kg/m3. In conclusion, the utilization of oil palm frond for the production of strong biocomposite material stands a great potential.


1998 ◽  
Vol 39 (3-4) ◽  
pp. 161-172 ◽  
Author(s):  
H. D. Rozman ◽  
H. Ismail ◽  
R. M. Jaffri ◽  
A. Aminullah ◽  
Z. A. Mohd Ishak

Author(s):  
F S Hashim ◽  
H W Yussof ◽  
M A K M Zahari ◽  
R A Rahman ◽  
R M Illias

2014 ◽  
Vol 893 ◽  
pp. 488-491 ◽  
Author(s):  
Elfarizanis Baharudin ◽  
Alyani Ismail ◽  
Adam Reda Hasan Alhawari ◽  
Edi Syams Zainudin ◽  
Dayang L.A. Majid ◽  
...  

This paper presents the results on dielectric properties of pulverized material based on agricultural waste namely oil palm frond and pineapple leaf fiber for microwave absorber application in the X-band frequency range. The investigation is started by identifying the pulverized materials permittivities and loss tangents using coaxial probe technique, followed by density measurement comprising the determination of bulk and solid densities. Then, by using dielectric mixture model, the solid particle dielectric properties were determined. It is observed that the air properties give quite an effect on the permittivity and loss tangent of the pulverized materials. It is also found that the lower the material density the higher material dielectric constant will be. Furthermore, the results show that, both oil palm frond and pineapple leaf fiber are potential to be X-band absorber with average dielectric constant of 4.40 and 3.38 respectively. The loss tangents for both materials were observed to be more than 0.1 which mark them as lossy materials.


Author(s):  
Siti Nur Ridhwah Muhamed Ramli ◽  
Tengku Elida Tengku Zainal Mulok ◽  
Sabiha Hanim Mohd Salleh ◽  
Khalilah Abdul Khalil ◽  
Othman Ahmad ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document