Removal of Heavy Metals from Aqueous Solution Using Biochar Derived from Biomass and Sewage Sludge

2015 ◽  
Vol 768 ◽  
pp. 89-95 ◽  
Author(s):  
Han Qiao Liu ◽  
Xian Xu ◽  
Zhen Hua Wu ◽  
Guo Xia Wei ◽  
Lei Sun

Biochar, a production of cotton/sludge pyrolysis, was used as an adsorbent for the removal of heavy metals from aqueous solutions. In this paper, it was assessed that the effect of biochar produced parameters including pyrolysis temperature and heating rate, adsorption time, solution pH and biochar modification on removal of Cd from aqueous solution, and the removal effect of heavy metals from mixed aqueous solution was also studied. The results showed that the optimum conditions were pyrolysis temperature of 550°C, heating rate of 5°C/min, adsorption time of 90min, biochar dosage of 10g/L and solution pH=6, respectively. And the effect was a little increased when the biochar were impregnated with chemicals. About 99% Cd, Pb and Zn were removed from aqueous solution using biochar under the optimum conditions.

Desalination ◽  
2009 ◽  
Vol 239 (1-3) ◽  
pp. 46-57 ◽  
Author(s):  
M. Otero ◽  
F. Rozada ◽  
A. Morán ◽  
L.F. Calvo ◽  
A.I. García

2020 ◽  
Vol 37 ◽  
pp. 101339 ◽  
Author(s):  
Chengyu Duan ◽  
Tianyu Ma ◽  
Jianyu Wang ◽  
Yanbo Zhou

2013 ◽  
Vol 789 ◽  
pp. 176-179 ◽  
Author(s):  
Eny Kusrini ◽  
Nofrijon Sofyan ◽  
Dwi Marta Nurjaya ◽  
Santoso Santoso ◽  
Dewi Tristantini

Hydroxyapatite/chitosan (HApC) composite has been prepared by precipitation method and used for removal of heavy metals (Cr6+, Zn2+and Cd2+) from aqueous solution. The HAp and 3H7C composite with HAp:chitosan ratio of 3:7 (wt%) were characterized by Fourier transform infrared spectroscopy, X-ray diffraction and scanning electron microscopy-energy dispersive X-ray spectroscopy. The SEM results showed that HAp is spherical-shaped and crystalline, while chitosan has a flat structure. SEM micrograph of 3H7C composite reveals crystalline of HAp uniformly spread over the surface of chitosan. The crystal structure of HAp is maintained in 3H7C composite. Chitosan affects the adsorption capacity of HAp for heavy metal ions; it binds the metal ions as well as HAp. The kinetic data was best described by the pseudo-second order. Surface adsorption and intraparticle diffusion take place in the mechanism of adsorption process. The binding of HAp powder with chitosan made the capability of composite to removal of Cr6+, Zn2+and Cd2+from aqueous solution effective. The order of removal efficiency (Cr6+> Cd2+> Zn2+) was observed.


1998 ◽  
Vol 33 (2) ◽  
pp. 205-211 ◽  
Author(s):  
Sung Ho Lee ◽  
Chong Hun Jung ◽  
Hongsuk Chung ◽  
Moo Yeal Lee ◽  
Ji-Won Yang

2016 ◽  
Vol 14 (1) ◽  
pp. 175-187 ◽  
Author(s):  
Lăcrămioara (Negrilă) Nemeş ◽  
Laura Bulgariu

AbstractMustard waste biomass was tested as a biosorbent for the removal of Pb(II), Zn(II) and Cd(II) from aqueous solution. This strategy may be a sustainable option for the utilization of such wastes. The influence of the most important operating parameters of the biosorption process was analyzed in batch experiments, and optimal conditions were found to include initial solution pH 5.5, 5.0 g biosorbent/L, 2 hours of contact time and high temperature. Kinetics analyses show that the maximum of biosorption was quickly reached and could be described by a pseudo-second order kinetic model. The equilibrium data were well fitted by the Langmuir model, and the highest values of maximum biosorption capacity were obtained with Pb(II), followed by Zn(II) and Cd(II). The thermodynamic parameters of the biosorption process (ΔG, ΔH and ΔS) were also evaluated from isotherms. The results of this study suggest that mustard waste biomass can be used for the removal of heavy metals from aqueous media.


Sign in / Sign up

Export Citation Format

Share Document