Research on Construction Control of Long-Span CFST Arch Bridge

2015 ◽  
Vol 777 ◽  
pp. 88-93
Author(s):  
Ying Gu ◽  
Ya Dong Li ◽  
Sai Zhi Liu

For an arch rib of concrete filled steel tube (CFST) erected by cable-stayed cantilever method, the construction control becomes increasingly difficult along with the erection of rib segments, owing to more system transformation, and higher degrees of static indeterminacy. First, for the problems usually occurred in the process of ribs erection, this paper presented a line-shape control principle that is “erecting higher, remaining stationary”. Secondly, based on analysis of the merits and demerits of common methods for cable forces calculation, and according to the principle of “remaining stationary”, a new calculation method for cable forces was proposed. At last, based on an X-style CFST railway arch bridge with a span of 360m, this paper compared the cable forces calculated by the new method with the actual tensioned forces, analyzed the variation of segments displacement in the process of erection, and discussed the influence of prearranged height on weld width. The control principle and the calculation method for cable forces presented in this paper have been proved effective, by the line-shape data measured after the closure of arch ribs, which may provide valuable reference for the construction control of similar CFST arch bridges.

2011 ◽  
Vol 255-260 ◽  
pp. 816-820
Author(s):  
Fang Wen Wu ◽  
Cheng Feng Xue

Simulation analysis is the basis for construction control of cable-stayed bridges, it monitors the process of the bridge construction. The relationship and importance of simulation and construction control are introduced in the paper. Based on the finite element theory and combined with construction theory of the cable -stayed bridges, according to use the software Midas/Civil, the construction characteristics of Masangxi Bridge is researched by making use of the forward calculation method and the backward calculation method. The results show that the system transformation of the bridge is occurred during the construction, thus, it is important to carry out careful and detailed forward simulation to ensure the safety of construction structure and meet with design requirements. The reasonable results can be drawn when the backward calculation method is combined with the forward calculation method.


2011 ◽  
Vol 255-260 ◽  
pp. 962-966
Author(s):  
Fan Xing ◽  
Lin Zhao ◽  
Ya Zhe Xing

In view of huge destructibility of the near-fault ground motions, structures with long natural vibration period are liable to fall into nonlinear reaction stage. Based on a full understanding of the near-fault seismic spectrum characteristics, the out-of-plane seismic response of a long span concrete-filled steel tube (CFST) arch bridge was studied in depth, and the research result could offer a reference for near-fault aseismic design.


2011 ◽  
Vol 378-379 ◽  
pp. 341-344
Author(s):  
Wei Feng Tian ◽  
Shui Xing Zhou ◽  
Ayad Thabet Saeed Alghabsha

Calculation of cable force under seasonal ambient temperature is the key and difficult problem in the construction of long-span rib arch bridge. It affects the final cable forces and deformations of arch rib after arch closure. Unstressed state control method is introduced in the construction of Daning River Bridge; unstressed qualities of ribs and unstressed length of cables can be obtained by optimization analysis of the maximum cantilever state in construction. According to unstressed state control method, the cable forces of each segment were calculated using the forward-iteration method. These results offer the basis for construction control, and guarantee the arch rib line and cable forces to meet the design requirements, and an arch closure with high precision.


2014 ◽  
Vol 587-589 ◽  
pp. 1586-1592 ◽  
Author(s):  
Wei Lu ◽  
Ding Zhou ◽  
Zhi Chen

A long-span cable-stayed arch bridge is a new form of bridge structure that combines features of cable-stayed bridges with characteristics of arch bridges. In the present study, we derived a practical calculation method for the lateral destabilization critical loading of cable-stayed arch bridges during the construction process based the energy principle. The validity of the method was verified with an example. The calculation method provides a quick and efficient way to evaluate the lateral stability of a cable-stayed arch bridge and a concrete filled steel tubular arch bridge during the construction process.


2018 ◽  
Vol 8 (4) ◽  
pp. 650 ◽  
Author(s):  
Hongye Gou ◽  
Wen Zhou ◽  
Changwei Yang ◽  
Yi Bao ◽  
Qianhui Pu

2012 ◽  
Vol 446-449 ◽  
pp. 1199-1202
Author(s):  
Yan Jiang Chen ◽  
Xiao Qiang Ren ◽  
Jin Jie Wang ◽  
Da Peng Gu

Abstract. This paper lists the problems during the stability analysis of long span CFST arch bridge and the corresponding modeling method. Based on the construction control of an orthotropic long span CFST arch bridge, a FEM model had been established to analysis the stability of its rib during the concrete pumping. The conclusion shows significant importance to the bridge’s construction process.


2011 ◽  
Vol 255-260 ◽  
pp. 896-900
Author(s):  
Xiao Fei Liang ◽  
Yue Xu ◽  
Hong Jing Du

Based on the hoisting construction feature of large hinge-support tower and field circumstance, the cable hoisting system for Meng-dong river grand bridge at the west of Hunan province is designed. Studying on cable hoisting system design and construction of the CFST arch bridge, the paper takes systematic analysis and calculations on the key construction technology of the CFST arch bridge, and puts it in practice successfully which provides experience for the similar long—span bridge construction of the follow.


2012 ◽  
Vol 204-208 ◽  
pp. 1976-1979
Author(s):  
Hang Sun ◽  
Xiao Jian Han ◽  
Xiu Yun Gao

The calculation formula of the vertical fundamental frequency of arch bridge has been given in current design codes, in which the rise-span ratio is the only variable on condition that the structure mass and stiffness are known. However, the dynamic properties of long-span concrete filled steel tube arch bridges have their own characteristics, which are influenced by a series of factors. Thus this article establishes a space model of a concrete-filled steel tube arch bridge. By analyzing the main design parameters’ influence on the structure dynamic properties, including rise-span ratios, arch-axis coefficient and wide-span ratios, some of conclusions has been made, which can be used for further research of the impact effect and earthquake dynamic response, and provide the necessary basis for the dynamic design of bridges of this kind


2013 ◽  
Vol 438-439 ◽  
pp. 917-922
Author(s):  
Zhi Wei Sun ◽  
Xiao Guang Wu

Monitoring and controlling of vertical construction for main arch ribs is most important for concrete-filled steel tube (CFST) arch bridges due to high risk. Controlling the difference of elevation between the two main arch ribs has direct influence on the mechanical behavior of lateral brace, towers and temporary hinges at arch abutments of main piers. Therefore, transverse synchronization control is the main priority in vertical rotating construction phase. Taking a half-through CFST arch bridge in Shijiazhuang City as an example, this paper make a study of transverse synchronization control of the two main arch ribs during vertical rotation. The finite element method (FEM) software-Midas is employed to simulate the main arch ribs in rotation construction phase, and maximum value of the difference of elevation between the two main arch ribs is obtained to offer reference and basis of vertical rotation construction of this bridge.


2021 ◽  
Vol 237 ◽  
pp. 04024
Author(s):  
Guangchuan Zhu ◽  
Wenping Xu ◽  
Jinfa Xu

In view of the demand of super long span pedestrian landscape bridge with curved deck, this paper proposes a kind of cable-stayed and flying-brid arch bridge with Lissajous curved arch rib and double curved bridge deck. Its plane positive projection is Lissajous curve figure, the side elevation of the arch rib is the shape of the cable-stayed and flying-brid arch, and the arch foot cable and the upper space cable between the arch ribs are installed on the Lissajous spatial curved arch rib with concrete-filled steel tube to form a self balanced structure system, which floats and drags across the river. The main arch sling and the tail cable are installed, the double curved bridge deck and the central circular sightseeing platform are suspended, and multiple groups of spatial cables work well together to complement each other, with having complementary advantages. Combined with the actual project, the parameter design is carried out, the Midas finite element model is established, the internal force of the structure is calculated, the structural dynamic mode and stability analysis are carried out, the rationality of its structural performance is verified by analysis and research.


Sign in / Sign up

Export Citation Format

Share Document