Characterization of Biaxial Fatigue by Using Strain Energy Density Approach for Steel

2015 ◽  
Vol 786 ◽  
pp. 126-130
Author(s):  
S.A.N. Mohamed ◽  
Shahrum Abdullah ◽  
Kamal A. Ariffin ◽  
Azli Arifin ◽  
Mahfodzah M. Padzi

This research discussed on the determination of the appropriate fatigue damage parameter to predict the fatigue life when material subjected to the biaxial loading condition with the consideration of the energy dissipated. Servo-hydraulic machine is used for the constant amplitude cyclic testing on smooth solid mild steel. The results showed that in the low cycle fatigue, the total strain energy density can represent the accumulative of fatigue damage and characterize on the damage parameters. The relationship has been proposed which the data satisfactorily correlated for the R2 is 0.8656. In addition, the hysteresis loop represent the area under the graph was the energy stored in the material during the loading and unloading condition. Hence the circumstances showed the deformation process governing the nucleation and propagation of fatigue cracks associated with the energy dissipated.

2005 ◽  
Vol 482 ◽  
pp. 109-114 ◽  
Author(s):  
Aleksander Karolczuk ◽  
Ewald Macha

The paper includes a review of literature on the multiaxial fatigue failure criteria based on the critical plane concept. The criteria were divided into three groups according to the distinguished fatigue damage parameter used in the criterion, i.e. (i) stress, (ii) strain and (iii) strain energy density criteria. Each criterion was described mainly by the applied the critical plane position. The multiaxial fatigue criteria based on two critical planes seem to be the most promising. These two critical planes are determined by different fatigue damage mechanisms (shear and tensile mechanisms).


2011 ◽  
Vol 21 (8) ◽  
pp. 1128-1153 ◽  
Author(s):  
Shun-Peng Zhu ◽  
Hong-Zhong Huang ◽  
Victor Ontiveros ◽  
Li-Ping He ◽  
Mohammad Modarres

Probabilistic methods have been widely used to account for uncertainty of various sources in predicting fatigue life for components or materials. The Bayesian approach can potentially give more complete estimates by combining test data with technological knowledge available from theoretical analyses and/or previous experimental results, and provides for uncertainty quantification and the ability to update predictions based on new data, which can save time and money. The aim of the present article is to develop a probabilistic methodology for low cycle fatigue life prediction using an energy-based damage parameter with Bayes’ theorem and to demonstrate the use of an efficient probabilistic method, moreover, to quantify model uncertainty resulting from creation of different deterministic model parameters. For most high-temperature structures, more than one model was created to represent the complicated behaviors of materials at high temperature. The uncertainty involved in selecting the best model from among all the possible models should not be ignored. Accordingly, a black-box approach is used to quantify the model uncertainty for three damage parameters (the generalized damage parameter, Smith–Watson–Topper and plastic strain energy density) using measured differences between experimental data and model predictions under a Bayesian inference framework. The verification cases were based on experimental data in the literature for the Ni-base superalloy GH4133 tested at various temperatures. Based on the experimentally determined distributions of material properties and model parameters, the predicted distributions of fatigue life agree with the experimental results. The results show that the uncertainty bounds using the generalized damage parameter for life prediction are tighter than that of Smith–Watson–Topper and plastic strain energy density methods based on the same available knowledge.


2011 ◽  
Vol 99-100 ◽  
pp. 1018-1022
Author(s):  
Li Zhang ◽  
Si Chu Gong ◽  
Xu Dong Ma

A law on the cumulative damage is presented basing on total strain energy induced as damage parameter to calculate the cumulative damage when the specimens of concrete subjected to fatigue loading.Then the maximum of critical cumulative damage and location of production are determined basing on the equation of cumulative fatigue damage combined with experimental result through using the finite element analysis and the critical plane method in fatigue analysis.The relation equation between the standardized critical total strain energy density and stress level is obtained by considering the impact of loading level.The fatigue life of specimens can be predicted by combining the equation of cumulative fatigue damage with the relation equation of damage and stress level and the prediction results coincide with experimental results very well.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2372
Author(s):  
Yifeng Hu ◽  
Junping Shi ◽  
Xiaoshan Cao ◽  
Jinju Zhi

The accumulated plastic strain energy density at a dangerous point is studied to estimate the low cycle fatigue life that is composed of fatigue initiation life and fatigue crack propagation life. The modified Ramberg–Osgood constitutive relation is applied to characterize the stress–strain relationship of the strain-hardening material. The plastic strain energy density under uni-axial tension and cyclic load are derived, which are used as threshold and reference values, respectively. Then, a framework to assess the lives of fatigue initiation and fatigue crack propagation by accumulated plastic strain energy density is proposed. Finally, this method is applied to two types of aluminum alloy, LC9 and LY12 for low-cycle fatigue, and agreed well with the experiments.


Author(s):  
Casey M. Holycross ◽  
Onome E. Scott-Emuakpor ◽  
Tommy J. George ◽  
M.-H. H. Shen

A fatigue life prediction method using strain energy density as a prediction parameter has had success predicting the lifetimes greater than 105 cycles for room and elevated temperatures under axial, bending, and shear loading for different material systems. This method uses monotonic strain energy density determined at the macroscale as a damage parameter for fatigue, despite the differences in damage behavior of static and dynamic loading. Recent studies have brought this method into question, as cyclic energy for low cycle fatigue loading has been found to be significantly greater. Amendments of the fatigue life model have addressed this discrepancy for continuum level measurements, but have yet to examine the localized effects of machined notches. This study investigates strain energy density for static and dynamic loading at cycle counts from one (monotonic) to 105 for plain and notched specimens, exposing the differences between damaging strain energy density at continuum and local length scales. Continuum level strain energy density is simply determined by using the load and strain feedback from a standard mechanical test procedure using a common extensometer and a servohydraulic load frame. Local strain energy density is determined more elaborately by using three methods. Localized energy is determined from compliance and a closed form relationship between stress intensity factor and strain energy density. The influence of the notch is considered in the stress intensity calculation, but its influence on stress concentration is disregarded. All calculations are based on the net section stress and linear elasticity is assumed. The analyses revealed two distinct groups, but one data set indicated coincidence with total accumulated strain energy density. These data also corroborate the theory that average strain energy density at the continuum level changes mechanisms governing damage evolution. Monotonic strain energy density is refuted as an appropriate damage parameter to predict fatigue lifetimes, and a statically equivalent strain energy density is proposed. An amended continuum level model is proposed, increasing prediction accuracy over fatigue lifetimes less than 106. Additionally, a localized model is proposed, expanding prediction capability to geometries with notch like features.


Sign in / Sign up

Export Citation Format

Share Document