Finite Element Analysis of Heater Length in a Porous Annulus - Part A

2015 ◽  
Vol 786 ◽  
pp. 193-198
Author(s):  
Ghulam Abdul Quadir ◽  
N.J.S Ahmed ◽  
A.A.A.A Al-Rashed ◽  
I.A. Badruddin ◽  
H.M.T. Khaleed ◽  
...  

The focus of present study is to investigate the influence of discrete heating by an isothermal heater placed at the inner radius of a vertical annular cylinder containing porous medium between its inner and the outer radius. Finite element method is used to solve the governing partial differential equations by employing 3 noded triangular elements. Darcy model is used to represent the flow behavior inside the porous medium. It is assumed that the thermal non-equilibrium condition exists between the fluid and solid phases of the porous medium. The study is conducted for different lengths of heater corresponding to 20%, 35% and 50% of the total height of the cylinder. It is found that the Nusselt number for fluid, solid phases as well as total Nusselt number initially decreases and the increases along the length of heater.

2015 ◽  
Vol 786 ◽  
pp. 199-204
Author(s):  
Abdullah A.A.A. Al-Rashed ◽  
S.N.J. Ahmed ◽  
Ghulam Abdul Quadir ◽  
H.M.T. Khaleed ◽  
I.A. Badruddin ◽  
...  

The present study is undertaken to investigate the effect of geometrical and physical parameters on discrete heating of an annular vertical porous cylinder heated isothermally at center portion of inner radius. Finite element method is employed to convert the governing partial differential equations into matrix form of equations by employing 3 noded triangular elements. Darcy model is assumed to represent the flow behavior inside the porous medium. Two temperature model is used to describe energy flow in the medium. The study is conducted for different lengths of heater corresponding to 20%, 35% and 50% of the total height of the cylinder. It is found that the flow pattern for aspect ratio 1 is smoother than that of the 0.5.


2017 ◽  
Vol 62 (3) ◽  
pp. 1881-1887
Author(s):  
P. Ramaswami ◽  
P. Senthil Velmurugan ◽  
R. Rajasekar

Abstract The present paper makes an attempt to depict the effect of ovality in the inlet pigtail pipe bend of a reformer under combined internal pressure and in-plane bending. Finite element analysis (FEA) and experiments have been used. An incoloy Ni-Fe-Cr B407 alloy material was considered for study and assumed to be elastic-perfectly plastic in behavior. The design of pipe bend is based on ASME B31.3 standard and during manufacturing process, it is challenging to avoid thickening on the inner radius and thinning on the outer radius of pipe bend. This geometrical shape imperfection is known as ovality and its effect needs investigation which is considered for the study. The finite element analysis (ANSYS-workbench) results showed that ovality affects the load carrying capacity of the pipe bend and it was varying with bend factor (h). By data fitting of finite element results, an empirical formula for the limit load of inlet pigtail pipe bend with ovality has been proposed, which is validated by experiments.


2018 ◽  
Vol 15 (2) ◽  
pp. 663-665 ◽  
Author(s):  
Nor Aiman Sukindar ◽  
Mohd Khairol Anuar Mohd Ariffin ◽  
B.T. Hang Tuah Baharudin ◽  
Che Nor Aiza Jaafar ◽  
Mohd Idris Shah Ismail

Open-source 3D printer has been widely used for fabricating three dimensional products. However, this technology has some drawbacks that need to be improved such as accuracy of the finished parts. One of the factors affecting the final product is the ability of the machine to extrude the material consistently, which is related to the flow behavior of the material inside the liquefier. This paper observes the pressure drop along the liquefier by manipulating the nozzle die angle from 80° to 170° using finite element analysis (FEA) for polymethylmethacrylate (PMMA) material. When the pressure drop along the liquefier is varied, the printed product also varies, thus providing less accuracy in the finished parts. Based on the FEA, it was found that 130° was the optimum die angle (convergent angle) for extruding PMMA material using open-source 3D printing.


Author(s):  
Fadi Al-Badour

Abstract Hybrid Friction Diffusion Bonding (HFDB) is a solid-state welding process that proved its capability of producing sound tube-tubesheet joints, but with limitations on tube thickness (up to 1mm) and tube-tubesheet materials. In the petrochemical industry, there is a great demand for the use of carbon steel shell and tube heat exchangers. To investigate the feasibility of HFDB techniques in joining thicker tube (i.e 2.1 mm) on tubesheet joint, a three-dimensional thermo-mechanical finite element model (FEM) was developed and solved using ABAQUS (commercial finite element analysis (FEA) software). The model was used to predict the temperature distribution and developed stresses during and after welding. The model considered temperature dependent material properties while Johnson-cook model was used to govern material plastic flow behavior. In this paper,19 mm (¾ in) ASTM 179 cold-drawn carbon steel tube into an ASTM A516 Grade 70 tubesheet joints was simulated. Results are validated based on temperature measurements, which was found in good agreement with experimental results. The developed model can be used to optimize processing parameters (i.e. tool rotational speed, dwell time “holding time”, and forging force.. etc) and study their effect on material flow and developed stresses.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Muhammad Usman ◽  
Muhammad Hamid ◽  
Zafar Hayat Khan ◽  
Rizwan Ul Haq ◽  
Waqar Ahmed Khan

Purpose This study aims to deal with the numerical investigation of ferrofluid flow and heat transfer inside a right-angle triangular cavity in the presence of a magnetic field. The vertical wall is partially heated, whereas other walls are kept cold. The effects of thermal radiation are included in the analysis. The governing equations including continuity, momentum and energy equations are converted to nondimensional form using viable variables. Design/methodology/approach Finite element method (FEM)-based simulations are performed using finite element approach to investigate the effects of the volume fraction of ferroparticles (Fe3O4), the length of the heating element and the dimensionless numbers including Rayleigh and Hartmann numbers on the streamlines, isotherms and Nusselt number. Findings It is demonstrated that both horizontal and vertical velocity components increase with the length of the heating element, whereas the dimensionless temperature decreases the heating domain. It is observed that an increase of 10% in the volume fraction of ferroparticles increases Nusselt number more than 12%, and 20% increase in the volume fraction of ferroparticles increases more than 30%, depending upon the length of the heating element. Originality/value This is a new study showing the significance of the magnetic nanoparticles for the enhancement of heat transfer rate in a triangular cavity.


Sign in / Sign up

Export Citation Format

Share Document