Experimental Investigation of Machining Parameters during Turning of AISI 316L Stainless Steel Using Nano Cutting Environment

2015 ◽  
Vol 787 ◽  
pp. 361-365 ◽  
Author(s):  
T. Rajmohan ◽  
S.D. Sathishkumar ◽  
K. Palanikumar

In modern machining processes, there are continuous cost pressures and high quality expectations in the product. Hence, it is required to explore the techniques that can reduce the cost and also increase the quality of the product. In the present work, machining performance of AISI 316L SS is assessed by the performing turning operation under nano cutting environment. Experiments have been carried out by plain turning of 48mm diameter and 600mm long rod of AISI 316L stainless steel on all geared lathe at different cutting velocities and feeds under wet machining with and without Carbon nano Tubes (CNT) inclusions using carbide inserts. The effect of cutting speed, feed rate, depth of cut on tool chip interface temperature and surface roughness are analysed using Taguchi method. Furthermore, using analysis of variance method, significant contributions of process parameters have been determined. Experimental results reveal that feed rate and cutting speed are the dominant variables on responses.

2015 ◽  
Vol 789-790 ◽  
pp. 141-145 ◽  
Author(s):  
Muhammad Yasir ◽  
Turnad Lenggo Ginta ◽  
Adam Umar Alkali ◽  
Mohammad Danish

This paper presents the influence of machining parameters namely cutting speed and feed rate on the machinability enhancement of AISI 316L stainless steel, in terms of surface integrity using end-milling with coated tungsten carbide tool (TiAlN). Optical microscopy, Scanning Electron Microscopy (SEM) and surface roughness measurement were used to analyze the surface integrity in terms surface topography and hardness test. A multi view approach is adopted to study the effect of different cutting parameters on the surface integrity of AISI 316L stainless steel. It was found that high cutting speed and low feed rate influence the surface roughness. Low surface roughness makes AISI 316L stainless steel more corrosion resistant which prevents wear of the implants.


2015 ◽  
Vol 766-767 ◽  
pp. 949-955 ◽  
Author(s):  
T. Rajmohan ◽  
S.D. Sathishkumar ◽  
K. Palanikumar ◽  
S. Ranganathan

Nano Cutting fluids play a significant role in machining operations and impact shop productivity, tool life and quality of work. In the present work, machining performance of AISI 316L Stainless steel (SS) is assessed under nano cutting environment. Experiments are performed by plain turning of 80mm diameter and 300mm long rod of AISI 316L SS on NAGMAT centre lathe under wet machining with and without Multi Wall Carbon nano Tubes (MWCNT) inclusions in the conventional lubricant. The Second order quadratic models were developed to predict cutting forces using response surface methodology (RSM) based D-optimal design. Machining parameters such as speed, feed rate and depth of cut are chosen as numerical factor, and the wt % of MWCNT content is considered as the categorical factor. Furthermore, using analysis of variance method, significant contributions of process parameters have been determined. Experimental results reveal that wt % of MWCNT and feed rate are the dominant variables on responses.


Author(s):  
Suresh Dhiman ◽  
Rakesh Sehgal ◽  
S. K. Sharma

Selection of any casting alloy is dependent on a wide variety of factors such as casting process, service requirement and economy of processing viz. weldability, castability and machinability. Out of these, machinability plays an important role in the selection of material for its commercial exploitation. In general, more than 80% of the manufactured parts are machined before they are ready for use. Thus machinability of a material controls significantly its economy in various applications. In this paper, machinabilty is evaluated by studying various data/parameters of Al alloy (A-390) such as cutting forces, tool tip interface temperature, surface finish and power consumption during turning at different cutting speed, depth of cut and feed rate. In this study, Al-Si alloys with different composition were subjected to machinability testing by varying the cutting speed, depth of cut and by keeping feed rate constant.


2016 ◽  
Vol 58 (6) ◽  
pp. 489-494 ◽  
Author(s):  
Panyasak Phakpeetinan ◽  
Amnuysak Chianpairot ◽  
Ekkarut Viyanit ◽  
Fritz Hartung ◽  
Gobboon Lothongkum

2016 ◽  
Vol 58 (6) ◽  
pp. 547-552 ◽  
Author(s):  
Darko Jagarinec ◽  
Peter Kirbiš ◽  
Jožef Predan ◽  
Tomaž Vuherer ◽  
Nenad Gubeljak

Sign in / Sign up

Export Citation Format

Share Document