Magnetic Field Assisted Electric Discharge Machining of Cryo-Treated Monel 400 Alloy

2015 ◽  
Vol 787 ◽  
pp. 371-375
Author(s):  
Rahul R. Jadhav ◽  
Vijaykumar S. Jatti ◽  
T.P. Singh

Monel alloys are pioneering materials which have exceptional engineering properties such as corrosion resistance, high toughness and show good response to cryogenic treatment. It finds uses in ship building, nuclear aerospace, missile and valve industries. These materials shows strain hardening effect which results in tool wear and in some cases tool breakage when machined by conventional methodshence, unconventional machining such as electrical discharge machining (EDM)discoverspurpose for machining of such materials. Researchers have recognized relation between electrical input process parameters of EDM process and output parameters of EDM process. But researchers have not investigated the influence of external magnetic field and cryo-treatment of work piece on EDM performance measures namely material removal rate (MRR) and tool wear rate (TWR). In vision of this the objective of present work was to study the effect of gap current, external magnetic field and cryogenic treatment of work part on MRR and TWR. Experiments were carried out by creating a 3 mm square hole on Monel400 alloys. Based on experimental results it was found that as gap current increases the MRR and TWR increases for untreated work part. For treated work part MRR increases and TWR decreases with increasein gap current. MRR and TWR increases with constant gap current for untreated work part, as magnetic field increases. For treated work part MRR increases and TWR decreases with increase in magnetic field at constant gap current.

2020 ◽  
Vol 38 (9A) ◽  
pp. 1406-1413
Author(s):  
Yousif Q. Laibia ◽  
Saad K. Shather

Electrical discharge machining (EDM) is one of the most common non-traditional processes for the manufacture of high precision parts and complex shapes. The EDM process depends on the heat energy between the work material and the tool electrode. This study focused on the material removal rate (MRR), the surface roughness, and tool wear in a 304 stainless steel EDM. The composite electrode consisted of copper (Cu) and silicon carbide (SiC). The current effects imposed on the working material, as well as the pulses that change over time during the experiment. When the current used is (8, 5, 3, 2, 1.5) A, the pulse time used is (12, 25) μs and the size of the space used is (1) mm. Optimum surface roughness under a current of 1.5 A and the pulse time of 25 μs with a maximum MRR of 8 A and the pulse duration of 25 μs.


Author(s):  
Arun Kumar Rouniyar ◽  
Pragya Shandilya

Magnetic field assisted powder mixed electrical discharge machining is a hybrid machining process with suitable modification in electrical discharge machining combining the use of magnetic field and fine powder in the dielectric fluid. Aluminum 6061 alloy has found highly significance for the advanced industries like automotive, aerospace, electrical, marine, food processing and chemical due to good corrosion resistance, high strength-to-weight ratio, ease of weldability. In this present work, magnetic field assisted powder mixed electrical discharge machining setup was fabricated and experiments were performed using one factor at a time approach for aluminum 6061 alloy. The individual effect of machining parameters namely, peak current, pulse on time, pulse off time, powder concentration and magnetic field on material removal rate and tool wear rate was investigated. The effect of peak current was found to be dominant on material removal rate and tool wear rate followed by pulse on time, powder concentration and magnetic field. Increase in material removal rate and tool wear rate was observed with increase in peak current, pulse on time and a decrease in pulse off time, whereas, for material removal rate increases and tool wear rate decreases up to the certain value and follow the reverse trend with an increase in powder concentration. Material removal rate was increased and tool wear rate was decreased with increase in magnetic field.


Author(s):  
S. Nallusamy

Electrical Discharge Machining is a machining method primarily used for hard metals or those that are impossible to be machined with traditional techniques. The experimental investigation of material removal rate and tool wear rate during machining of oil hardened non-shrinking steel with brass and copper electrodes using EDM machine was carried out in this paper. This investigation presents the analysis and evaluation of heat affected zones and surface finish of the work piece using different tool electrodes and varying the machine parameters. The commercial grade kerosene oil has been used as dielectric fluid. The effect of various important EDM parameters such as discharge current (Ip) 2 to12A, pulse duration (Ton and Toff) and sparking voltage (V) of 80±5% have been used to yield the response in terms of Material Removal Rate (MRR) and Tool Wear Rate (TWR). Further a detailed analysis of the heat affected regions was also been carried out by using scanning electron microscopy.


Micromachines ◽  
2020 ◽  
Vol 11 (8) ◽  
pp. 754 ◽  
Author(s):  
Asarudheen Abdudeen ◽  
Jaber E. Abu Qudeiri ◽  
Ansar Kareem ◽  
Thanveer Ahammed ◽  
Aiman Ziout

Electrical discharge machining (EDM) is an advanced machining method which removes metal by a series of recurring electrical discharges between an electrode and a conductive workpiece, submerged in a dielectric fluid. Even though EDM techniques are widely used to cut hard materials, low efficiency and high tool wear remain remarkable challenges in this process. Various studies, such as mixing different powders to dielectric fluids, are progressing to improve their efficiency. This paper reviews advances in the powder-mixed EDM process. Furthermore, studies about various powders used for the process and its comparison are carried out. This review looks at the objectives of achieving a more efficient metal removal rate, reduction in tool wear, and improved surface quality of the powder-mixed EDM process. Moreover, this paper helps researchers select suitable powders which are exhibiting better results and identifying different aspects of powder-mixed dielectric fluid of EDM.


2014 ◽  
Vol 592-594 ◽  
pp. 479-483 ◽  
Author(s):  
Hemant Walkar ◽  
Vijaykumar S. Jatti ◽  
T.P. Singh

Electric discharge machining (EDM) is a non-conventional machining process in which material removal take place by a series of electric spark generated between the small gap of both electrode and both immersed in dielectric medium. The gap conditions of EDM significntly affect the stability of machining process. Thus, the machining performance would be improved by removing the debris from the machining gap fastly. In view of this, the objective of present work was to investigate the effect of magnetic field on the material removal rate (MRR) and surface roughness (SR), in conjunction with the variation of electrical parameters like pulse on-off times and gap current, while keeping other electrical parameters and work piece/ tool material constant. Experimental results showed that the magnetic field assisted EDM improves the process stability. Moreover, the EDM process with high efficiency and quality of machined parts could fulfill the requirements of modern manufacturing industries.


2015 ◽  
Vol 787 ◽  
pp. 386-390
Author(s):  
Sandeep Chinke ◽  
Vijaykumar S. Jatti ◽  
T.P. Singh

Beryllium copper possesses high strength which produces severe problem of surface integrity and tool wear during machining by conventional machining process. Electrical discharge machining is a practically viable option to solve this problem. The present study investigates the effect of cryogenic treatment of work part along with gap current and external magnetic field on material removal rate (MRR) and tool wear rate (TWR). Blind 3 mm square holes were produced using electrolytic copper tool electrode to machine cryo-treated BeCu and untreated BeCu. Gap current is varied from 8 A to 16 A in a step of 2 amperes and magnetic strength is varied from 0 to 0.496 T in a step of 0.124 T. Based on the experimental results it was found that MRR increases with increase in gap current for both untreated BeCu and treated work part. Plotted graphs of cryo-treated work part showed high values of MRR in comparison to untreated work part. TWR increases for both treated and untreated BeCu work part with increase in gap current. But the TWR was less for cryo-treated work part in comparison to untreated work part. MRR and TWR increases for both treated and untreated BeCu work part with increasing magnetic strength. Again the MRR was found higher with lower TWR for treated workpiece with regard to magnetic strength. Thus it can be concluded that cryogenic-treatment with magnetic strength improves EDM machining efficiency.


Author(s):  
Apurva A Kulkarni Et.al

Dry EDM may be a modification of the traditional electrical discharge machining (EDM) process during which the liquid dielectric is replaced by a gaseous medium. High velocity gas is supplied through it into the discharge gap. The flow of high velocity gas into the gap facilitates removal of debris and prevents excessive heating of the tool and work piece at the discharge spots. it's now known that aside from being an environment–friendly process, other advantages of the dry EDM process are low tool wear, lower discharge gap, lower residual stresses, smaller white layer and smaller heat affected zone.[1] Keeping literature review into consideration, during this research, an effort has been made by selecting compressed gas as a dielectric medium, with Hastelloy as a work piece material and copper as a tool electrode. Conventional experiments were also performed. Experiments are performed using Taguchi DoE orthogonal array to watch and analysis the consequences of various process parameters to optimize the response variables like material removal rate (MRR) and gear wear rate (TWR).


Electrical discharge machining (EDM) is one of the oldest nontraditional machining processes, commonly used in automotive, aerospace and ship building industries for machining metals that have high hardness, strength and to make complicated shapes that cannot be produced by traditional machining techniques. The process is based on the thermoelectric energy between the work piece and an electrode. EDM is slow compared to conventional machining, low material removal rate, high surface roughness, high tool wear and formation of recast layer are the main disadvantages of the process. Tool wear rate, material removal rate and surface quality are important performance measures in electric discharge machining process. Numbers of ways are explored by researchers for improving and optimizing the output responses of EDM process. The paper summarizes the research on die-sinking EDM relating to the improvements in the output response.


2020 ◽  
Vol 27 (12) ◽  
pp. 2030002 ◽  
Author(s):  
AMOLJIT SINGH GILL ◽  
SANJEEV KUMAR ◽  
JUJHAR SINGH ◽  
VIVEK AGGARWAL ◽  
SHUBHAM SHARMA

Electrical discharge machining (EDM) is one of the most explored nonconventional machining processes due to its ability to machine intricate shapes on conductive materials. However, tool wear is one of the major challenges in the EDM process as it directly affects the accuracy of machining, surface roughness, reproduction of geometrical characteristics on the workpiece and cost of the process. Lots of work have been done to minimize the tool wear by improving the discharge conditions by controlling the EDM process parameters, varying the dielectric characteristics, powder-mixed dielectric methods and ultrasonic-assisted methods. However, minimizing the tool wear by the above approaches also constrains the material removal rate from the workpiece and accuracy of the process. This review highlights the efforts done by the researchers to improve tool wear by recently developed techniques or modifications. Researches available in the field of using treated tool electrode, cooled tool electrode, coated tool electrode, noble tool materials and other techniques are highlighted.


2019 ◽  
Vol 26 (05) ◽  
pp. 1830008 ◽  
Author(s):  
K. P. MAITY ◽  
M. CHOUBEY

Electrical discharge machining (EDM) is an unconventional machining process used for machining of hard-to-cut materials. Both EDM and micro-EDM processes are extensively used for producing dies and molds, complex cavities, and 3D structures. In recent years, researchers have intensively focused on improving the performance of both micro-EDM and EDM processes. This paper reviews the research work carried out by the researchers on vibration-assisted EDM, micro-EDM, and wire EDM. The consolidated review of this research work enables better understanding of the vibration-assisted EDM process. This study also discusses the influence of vibration parameters such as vibration frequency and amplitude on the material removal rate (MRR), electrode wear rate (EWR), and surface roughness (SR). The important issues and research gaps in the respective area of research are also presented in this paper.


Sign in / Sign up

Export Citation Format

Share Document