Modeling the Impact of PHEV Penetration on the Residential Electrical Networks

2015 ◽  
Vol 793 ◽  
pp. 154-158
Author(s):  
S.A. Syed Mustaffa ◽  
M.F. Mohd Yusoff ◽  
N. Baharin ◽  
T.A.R Tuan Abdullah

Plug-in Hybrid Electric Vehicles (PHEV) have a better future in term of providing sustainable mobility due to their high efficiency and low emission levels. However, the global penetration of PHEVs can create negative impacts if their charging activities are not scheduled and controlled. This paper presents the impact of PHEVs charging on the residential network in Malaysia under various charging scenarios. The simulation results shows there will be a significant voltage drop in the cable and increment in load profile due to additional load. In order to avoid any unwanted circumtances, several PHEV charging profiles are analysed and some potential solutions are suggested including controlling and resizing of the cable.

2011 ◽  
Vol 121-126 ◽  
pp. 3406-3410 ◽  
Author(s):  
Yang Yang ◽  
Yang Yang ◽  
Da Tong Qin ◽  
Jin Li

A new kind of pressure coordinated control system suite of regenerative braking system for hybrid electric vehicles (HEV) is proposed in this paper on the basis of appropriate transformation on traditional hydraulic braking system with ABS. AMEsim modular simulation platform is used to build a simulation model of the system. Dynamic performances of the key components and system are simulated and analyzed. And the simulation results show the effectiveness and feasibility of the pressure coordinated control system, which lays the foundation of the design and optimization for the regenerative braking system.


Energies ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 430 ◽  
Author(s):  
F. P. Brito ◽  
Jorge Martins ◽  
Francisco Lopes ◽  
Carlos Castro ◽  
Luís Martins ◽  
...  

A range extender (RE) is a device used in electric vehicles (EVs) to generate electricity on-board, enabling them to significantly reduce the number of required batteries and/or extend the vehicle driving range to allow occasional long trips. In the present work, an efficiency-oriented RE based on a small motorcycle engine modified to the efficient over-expanded cycle, was analyzed, tested and simulated in a driving cycle. The RE was developed to have two points of operation, ECO: 3000 rpm, very high efficiency with only 15 kW; and BOOST: 7000 rpm with 35 kW. While the ECO strategy was a straightforward development for the over-expansion concept (less trapped air and a much higher compression ratio) the BOOST strategy was more complicated to implement and involved the need for throttle operation. Initially the concepts were evaluated in an in-house model and AVL Boost® (AVL List Gmbh, Graz, Austria), and proved feasible. Then, a BMW K75 engine was altered and tested on a brake dynamometer. The running engine proved the initial concept, by improving the efficiency for the ECO condition in almost 40% in relation to the stock engine and getting well over the required BOOST power, getting to 35 kW, while keeping an efficiency similar to the stock engine at the wide open throttle (WOT). In order to protect the engine during BOOST, the mixture was enriched, while at ECO the mixture was leaned to further improve efficiency. The fixed operation configuration allows the reduction, not only of complexity and cost of the RE, but also the set point optimization for the engine and generator. When integrated as a RE into a typical European light duty vehicle, it provided a breakthrough consumption reduction relatively to existing plug-in hybrid electric vehicles (PHEVs) in the market in the charge sustaining mode. The very high efficiency of the power generation seems to compensate for the loss of efficiency due to the excess electricity production, which must be stored in the battery. The results indicate that indeed it is possible to have an efficient solution, in-line with the electric mobility sustainability paradigm, which can solve most of the shortcomings of current EVs, notably those associated with batteries (range, cost and charging time) in a sustainable way.


2020 ◽  
Vol 10 (11) ◽  
pp. 3949 ◽  
Author(s):  
Donglian Gu ◽  
Zhe Zheng ◽  
Pengju Zhao ◽  
Linlin Xie ◽  
Zhen Xu ◽  
...  

The outbreak of COVID-19 resulted in severe pressure on the existing medical infrastructure in China. Several Chinese cities began to construct temporary hospitals for the centralized treatment of COVID-19 patients. The harmful exhaust air from the outlets of these hospitals may have a significant adverse impact on the fresh-air intakes and surrounding environment. Owing to the need to rapidly construct these hospitals within 6–10 days, just a few hours are allowed for the analysis of the impact of this exhaust air on the environment. To overcome this difficulty, a high-efficiency simulation framework is proposed in this study. Based on the open-source computational fluid dynamics software, FDS, the proposed framework is adaptive and incorporates building information with different levels of detail during various design phases of the hospital, and has been applied in the design of the Wuhan Huoshenshan Hospital, the first typical COVID-19 temporary hospital in China. According to the simulation results, neither the fresh-air intakes nor the surrounding buildings would be polluted by the harmful air discharged from the air outlets of the Huoshenshan hospital. The proposed simulation framework can provide a reference for the design and overall planning of similar hospitals in China and other affected countries.


Sign in / Sign up

Export Citation Format

Share Document