Passive Safety Analysis for the Commercial Vehicle Cab after Weight-Reduction Design

2015 ◽  
Vol 798 ◽  
pp. 48-52 ◽  
Author(s):  
Jing Chen ◽  
Hong Yin Wang ◽  
Qian Wang ◽  
Xiong Long Tao

Lighter weight commercial vehicles facilitate faster transport, higher mobility and fuel conservation. Weight reduction and safety are mutually competing objectives. And the safety should not be compromised after weight reduction. Full size crash tests are expensive and time consuming to organize. Using a numerical simulation for predicting crash to the occupants’ safety can minimize the number of such trials. In this paper three virtual crash simulations for the three load cases: Front impact test, Roof strength test and Rear wall strength test are performed according to the European regulation ECE-R29. The explicit finite element program LS-DYNA is used for that purpose. The comparisons between simulation results and test data available in the literature are also presented in this paper.

2011 ◽  
Vol 148-149 ◽  
pp. 198-201
Author(s):  
Wei Wang ◽  
Xu Liang Xie ◽  
Fu Lin Shen ◽  
Xiao Feng Wang

For design of truck cabin, the survival space must be guaranteed for the safety for driver and front seat passenger in event of crash, which is the legal requirement described in ECE-R29 regulation. In this paper, a finite element model of a high-top cabin for heavy truck was built with commercial code Hypermesh, and a manikin according to ECE-R29 was added to the driver seat. The explicit finite element program Ls-Dyna was used to verify the roof strength and rear wall strength. Analysis and discussion on the deformation of the truck cabin and the survival space of the dummy were presented. The survival space of the cab was proved to be sufficient for the safety of the driver.


2011 ◽  
Vol 148-149 ◽  
pp. 1081-1084
Author(s):  
Wei Wang ◽  
Xu Liang Xie ◽  
Fu Lin Shen ◽  
Xiao Feng Wang

ECE R29 regulation has legally claimed that the survival space must be guaranteed for the safety for driver and front seat passenger in event of crash during design of truck cabin. In this paper, a finite element model of a high-top cabin of a heavy truck with a manikin on the driver seat was built with commercial code Hypermesh, The explicit finite element program Ls-Dyna was used to simulate the frontal pendulum impact on the high-top cab in the light of ECE R29 regulation. Deformation of the truck cabin and the survival space of the dummy were analyzed and discussed. Also, some suggestions were given to solve the contact possibility between steering column and the knees of manikin.


Author(s):  
Mohammad Habibi Parsa ◽  
Payam Darbandi

A new approach for manufacturing of shell fender is proposed and has been examined numerically and experimentally. The new suggested method is based on sheet hydroforming process, which has a lot of advantages over conventional deep drawing process. After defining the shape of initial blank using an inverse finite element program, numerical evaluation of the proposed sheet hydroforming process for production of shell fender has been carried out using an explicit finite element code considering fluid pressure, boundary conditions and tools. Then experimental evaluation has been carried out using down sized specimen and the results have been compared with results of previous simulations. It has been shown that there are similar trends between finite element and experimental results.


2011 ◽  
Vol 88-89 ◽  
pp. 662-667 ◽  
Author(s):  
Ting Tang ◽  
Li Jun Wang ◽  
Jin Bo Ma

The purpose of this work is to study the effect of liquid in double bottom structures subjected to a closely underwater explosion shock loading. The comparative analyses are made by use of a commercial, explicit finite element program. Based on the difference of depth of liquid in double bottom structures and distance between explosive and outer bottom, six cases were simulated in this paper. The results show that liquid in cabins can enhance the resistance of double bottom structures to an underwater explosion.


Author(s):  
P. Thamburaja ◽  
K. Sarah ◽  
A. Srinivasa ◽  
J. N. Reddy

In this article, we developed a thermodynamically consistent non-local microcracking model for quasi-brittle materials with application to concrete. The model is implemented using a novel graph-based finite element analysis (GraFEA) approach that allows for (i) the probabilistic modeling of the growth and coalescence of microcracks, (ii) the modeling of crack closure using a kinematics-based approach, and (iii) the modeling of rate effects on microcracking. The developed theoretical model and its computational framework is also implemented into the dynamics-based Abaqus/Explicit finite element program through a vectorized user-material subroutine interface. We further demonstrate the procedure for obtaining the parameters (including the non-local intrinsic material length scale, which governs the fracture process) and consequently validate the simulations with independent experimental results.


1995 ◽  
Vol 2 (3) ◽  
pp. 193-204 ◽  
Author(s):  
Sang-Ho Lee ◽  
Ted Belytschko

The implementation and application of h-adaptivity in an explicit finite element program for nonlinear structural dynamics is described. Particular emphasis is placed on developing procedures for general purpose structural dynamics programs and efficiently handling adaptivity in shell elements. New projection techniques for error estimation and projecting variables on new meshes after fission or fusion are described. Several problems of severe impact are described.


2013 ◽  
Vol 767 ◽  
pp. 46-51
Author(s):  
Wei Cao ◽  
Zhong Qi He ◽  
Wang Hua Chen

In order to investigate the afterburning effect of TNT in an open space, a double-layer container (DLC) which can be filled with different gases and enhance the afterburning effect of underoxidized explosives was designed. The charges were located in the inner container, and the outer container was filled with different gases (air, oxygen or nitrogen). The experiments were conducted under water. After initiation, the DLC cracks and provides gas for the detonation products. Underwater static pressure transducer was the main diagnostic. It is shown that pressure and impulse histories for explosions in oxygen and air are greater than those recorded for explosions in nitrogen. Moreover, the afterburning energy was calculated. Results show that the afterburning energy increases with the increase of the amount of oxygen, but cannot reach the theoretically maximum value even though there is excessive oxygen. Finally, two-dimensional numerical simulations were performed by the explicit finite element program ANSYS AUTODYN. The Miller energy release model was used to describe the afterburning process. Results demonstrate that computed pressure histories agreed with measured pressure histories well in terms of initial peak pressure, waveforms and total impulse.


Modelling ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 149-165
Author(s):  
Mahmoud Abada ◽  
Ahmed Ibrahim ◽  
S.J. Jung

The utilization of sacrificial layers to strengthen civilian structures against terrorist attacks is of great interest to engineering experts in structural retrofitting. The sacrificial cladding structures are designed to be attached to the façade of structures to absorb the impact of the explosion through the facing plate and the core layer progressive plastic deformation. Therefore, blast load striking the non-sacrificial structure could be attenuated. The idea of this study is to construct a sacrificial cladding structure from multicellular hybrid tubes to protect the prominent bearing members of civil engineering structures from blast hazard. The hybrid multi-cell tubes utilized in this study were out of staking composite layers (CFRP) around thin-walled tubes; single, double, and quadruple (AL) thin-walled tubes formed a hybrid single cell tube (H-SCT), a hybrid double cell tube (H-DCT), and a hybrid quadruple cell tube (H-QCT). An unprotected reinforced concrete (RC) panel under the impact of close-range free air blast detonation was selected to highlight the effectiveness of fortifying structural elements with sacrificial cladding layers. To investigate the proposed problem, Eulerian–Lagrangian coupled analyses were conducted using the explicit finite element program (Autodyn/ANSYS). The numerical models’ accuracy was validated with available blast testing data reported in the literature. Numerical simulations showed a decent agreement with the field blast test. The proposed cladding structures with different core topologies were applied to the unprotected RC slabs as an effective technique for blast loading mitigation. Mid-span deflection and damage patterns of the RC panels were used to evaluate the blast behavior of the structures. Cladding structure achieved a desired protection for the RC panel as the mid-span deflection decreased by 62%, 78%, and 87% for H-SCT, H-DCT, and H-QCT cores, respectively, compared to the unprotected panels. Additionally, the influence of the skin plate thickness on the behavior of the cladding structure was investigated.


2008 ◽  
Vol 33-37 ◽  
pp. 851-856 ◽  
Author(s):  
Jun Liu ◽  
Yu Long Li ◽  
Fei Xu

This paper is focused on the development of an effective numerical method to simulate bird-impact aircraft windshield events. A new Smooth Particle Hydrodynamics (SPH) which has been incorporated as a solver option into the explicit finite element program PAM-CRASH was used to model the bird. The deformation between the numerical results and the experimental results is in good agreement. Simulation results of a bird-impact process indicated that the SPH bird model is more suitable to model the break-up of the bird into particles. Failure of the windshield in the experiment was simulated, and the good agreement between the numerical and experiment indicates that the failure model established in the present paper is reasonable. Finally, the energy changes of the bird and the windshield were calculated.


Sign in / Sign up

Export Citation Format

Share Document