Numerical Modeling of a Static Cavitation Module

2016 ◽  
Vol 817 ◽  
pp. 64-69
Author(s):  
Tatiana Vitenko ◽  
Paweł Droździel ◽  
Nazar Horodysky

This paper presents the results of numerical modelling of cavitation flows in a hydrodynamic module. The simulation was performed using the SolidWorks software package. The computations were made based on the Navier-Stokes equation combined with liquid state equations and empirical dependencies which define liquid parameters. The numerical results are in good agreement with experimental data.

2014 ◽  
Vol 136 (3) ◽  
Author(s):  
Maria F. Pantano ◽  
Leonardo Pagnotta ◽  
Salvatore Nigro

While at high pressure, the classical Navier–Stokes equation is suitable for modeling squeeze-film damping, at low pressure, it needs some modification in order to consider fluid rarefaction. According to a common approach, fluid rarefaction can be included in this equation by substituting the standard fluid viscosity with a fictitious quantity, known as effective viscosity, for which different formulations were proposed. In order to identify which expression works better, the results obtained when either formulation is implemented inside the Navier–Stokes equation (that is then solved by both analytical and numerical means) are compared with already available experimental data. At the end, a novel expression is discussed, derived from a computer-assessed optimization procedure.


2014 ◽  
Vol 641-642 ◽  
pp. 288-299
Author(s):  
Ming Wu Zhang ◽  
Chun Bo Jiang ◽  
He Qing Huang

Lateral distributions of depth-averaged velocity in open compound channels with submerged vegetated floodplains are analyzed, based on an analytical solution to the depth-integrated Reynolds-Averaged Navier-Stokes equation with a term included to account for the effects of vegetation. The cases of open channels are: rectangular channel with submerged vegetated corner, and compound channel with submerged vegetated floodplain. The present paper proposes a method for predicting lateral distribution of the depth-averaged velocity with submerged vegetated floodplains. The method is based on a two-layer approach where flow above and through the vegetation layer is described separately. An experiment in compound channel with submerged vegetated floodplain is carried out for the present research. The analytical solutions of the three cases are compared with experimental data. The corresponding analytical depth-averaged velocity distributions show good agreement with the experimental data.


1988 ◽  
Author(s):  
D. T. Orletsky ◽  
J. F. Louis

Predictions of the laminar flow and temperature distribution between coaxial rotating disks of finite radius have been obtained using a computer model solving the Navier-Stokes equation for a laminar fluid of constant properties. To do this, a stream vorticity model in the r-z plane is used in the solution of the Navier-Stokes equation. The velocity fields were obtained for both shrouded and unshrouded disks with or without radial throughflow for either co-rotating or counter-rotating disks. Velocity profiles predicted by this model were compared to experimental data, to a similarity solution and to a large aspect ratio model. The results obtained by this model closely matched the experimental data, and the large aspect ratio solution for the cases considered. The uncoupled energy equation was then solved using the calculated velocity distribution for the temperature distribution between the disks. This was done for two cases: i) two isothermal disks, and ii) one isothermal disk and one adiabatic disk.


2014 ◽  
Vol 06 (05) ◽  
pp. 1450049 ◽  
Author(s):  
ADIL EL BAROUDI ◽  
FULGENCE RAZAFIMAHERY

A potential flow is presented in this paper for the analysis of the fluid-structure interaction systems including, but not limited to, the idealized human head. The model considers a cerebro-spinal fluid (CSF) medium interacting with two solid domain. The fluid field is governed by the linearized Navier–Stokes equation. A potential technique is used to obtain a general solution for a problem. The method consists in solving analytically partial differential equations obtained from the linearized Navier–Stokes equation. From the solution, modal shapes and stokes cells are shown. In the analysis, the elastic skull model and the rigid skull model are presented. A finite element analysis is also used to check the validity of the present method. The results from the proposed method are in good agreement with numerical solutions. The effects of the fluid thickness is also investigated.


1992 ◽  
Vol 114 (4) ◽  
pp. 638-641 ◽  
Author(s):  
A. Asai

The three-dimensional Navier-Stokes equation for the motion of ink both inside and outside the nozzle of a bubble jet printer is numerically solved, for the first time, to predict the bubble behavior and the drop ejection. The results of calculation for three types of ink agreed well with experimental data. The effect of initial bubble pressure, viscosity and surface tension on the volume and the velocity of the drop is numerically investigated. The three-dimensional calculation is very useful to the design of bubble jet printers because it saves a lot of time and cost to make and evaluate prototypes.


2006 ◽  
Vol 4 ◽  
pp. 224-236
Author(s):  
A.S. Topolnikov

The paper is devoted to numerical modeling of Navier–Stokes equations for incompressible media in the case, when there exist gas and liquid inside the rectangular calculation region, which are separated by interphase boundary. The set of equations for incompressible liquid accounting for viscous, gravitational and surface (capillary) forces is solved by finite-difference scheme on the spaced grid, for description of interphase boundary the ideology of Level Set Method is used. By developed numerical code the set of hydrodynamic problems is solved, which describe the motion of two-phase incompressible media with interphase boundary. As a result of numerical simulation the solutions are obtained, which are in good agreement with existing analytical and experimental solutions.


1998 ◽  
Vol 115 (1) ◽  
pp. 18-24 ◽  
Author(s):  
G.W. Wei ◽  
D.S. Zhang ◽  
S.C. Althorpe ◽  
D.J. Kouri ◽  
D.K. Hoffman

Sign in / Sign up

Export Citation Format

Share Document