Experimental Study of a Laminar Flow Solid Desiccant Dehumidifier Driven by a Low Temperature Heat Source

2016 ◽  
Vol 819 ◽  
pp. 361-365 ◽  
Author(s):  
Seung Jin Oh ◽  
Kyaw Thu ◽  
Muhammad Wakil Shahzad ◽  
Wongee Chun ◽  
Kim Choon Ng

In this paper, an experimental study of a laminar flow solid desiccant dehumidifier has been presented. The cyclic steady state performance of adsorption-desorption processes was analyzed at various heat source temperatures and typical ambient humidity conditions in tropics. The desiccant dehumidification system consists of two beds filled with silica gel, two heat exchangers operating at 30 oC and 80 oC respectively, three humidity stations for measurement of the temperature and humidity conditions of the system and a blower to make airflow throughout the system. Type-RD silica gel of 0.3 mm average diameter was used as the working desiccant in the dehumidification system. This system has no moving parts rendering less maintenance compared with a rotary type. It is also energy-efficient means of dehumidification by adsorption process with low temperature heat source as compared to the conventional methods. As a result, it was observed the humidity ratio of inlet air is reduced from 24 g/kg of dry air to about 17 g/kg of dry air. Concomitantly, hot water at 80 oC is used to regenerate the adsorbent.

2022 ◽  
Vol 2160 (1) ◽  
pp. 012032
Author(s):  
Hongxuan Li ◽  
Tonghua Zou ◽  
Qingling Hui ◽  
Ting Li ◽  
Walter Mittelbach

Abstract In recent years, adsorption refrigeration technology has attracted wide attention from experts and scholars at home and abroad due to its environmental friendliness and energy saving advantages. In order to study the effectiveness of adsorption refrigeration technology to recover low-grade energy, a silica gel-water adsorption refrigeration system was proposed, which can effectively utilize low-grade energy such as industrial waste heat. The structure and composition of the system are introduced. The operation performance of the unit is tested under different working conditions by orthogonal experimental method, and the experimental results are analyzed. The effects of hot water temperature and flow, chilled water temperature and flow on the refrigeration capacity and COP value of the system are obtained. The experimental results show that under the low-temperature heat source of 55-75°C, the cooling capacity of the system can reach 5.3-12 and the COP value can reach 0.36-0.56. Under the same hot water temperature difference, the cooling capacity and COP value of the system increase rapidly under the condition of changing the hot water temperature at low temperature, indicating that increasing the heat source temperature at low temperature has a greater impact on the system performance. Through the analysis of primary and secondary effects, it is concluded that the inlet temperature of hot water is the main factor affecting the refrigeration capacity and COP value of the system.


Solar Energy ◽  
2005 ◽  
Author(s):  
Ronghua Wu ◽  
Chenghu Zhang ◽  
Dexing Sun

The integrated low and high temperature heating water system consists of heat pump heat source and boiler heat source. The heat pump heat source abstract heat from low temperature heat source and produce hot water up to 65°C. During mild weather, the 65°C hot water is sufficient for building heating. During cold weather conditions, the boiler heat source will have to be used to produce hot water at 90°C or higher to satisfy the building comfort. To improve the system economy, the integrated system has to maximize the use of the low temperature heat source since it is free. This paper presents a theoretical models and analysis to optimize the system design parameters.


Energies ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 6576
Author(s):  
Ximo Masip ◽  
Emilio Navarro-Peris ◽  
José M. Corberán

Energy recovery from a low temperature heat source using heat pump technology is becoming a popular application. The domestic hot water demand has the characteristic of being very irregular along the day, with periods in which the demand is very intensive and long periods in which it is quite small. In order to use heat pumps for this kind of applications efficiently, the proper sizing and design of the water storage tank is critical. In this work, the optimal sizing of the two possible tank alternatives, closed stratified tank and variable-water-volume tank, is presented, and their respective performance compared, for domestic hot water production based on low temperature energy recovery in two potential applications (grey water and ultra-low temperature district heating). The results show that the efficiency of these kind of systems is very high and that variable-water-volume tanks allow a better use of the energy source, with an 8% higher exergy efficiency and around 3% better seasonal performance factor (SPF), being able to provide similar comfort levels with a smaller system size.


Energies ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1853 ◽  
Author(s):  
Pavel Neuberger ◽  
Radomír Adamovský

The efficiency of a heat pump energy system is significantly influenced by its low-temperature heat source. This paper presents the results of operational monitoring, analysis and comparison of heat transfer fluid temperatures, outputs and extracted energies at the most widely used low temperature heat sources within 218 days of a heating period. The monitoring involved horizontal ground heat exchangers (HGHEs) of linear and Slinky type, vertical ground heat exchangers (VGHEs) with single and double U-tube exchanger as well as the ambient air. The results of the verification indicated that it was not possible to specify clearly the most advantageous low-temperature heat source that meets the requirements of the efficiency of the heat pump operation. The highest average heat transfer fluid temperatures were achieved at linear HGHE (8.13 ± 4.50 °C) and double U-tube VGHE (8.13 ± 3.12 °C). The highest average specific heat output 59.97 ± 41.80 W/m2 and specific energy extracted from the ground mass 2723.40 ± 1785.58 kJ/m2·day were recorded at single U-tube VGHE. The lowest thermal resistance value of 0.07 K·m2/W, specifying the efficiency of the heat transfer process between the ground mass and the heat transfer fluid, was monitored at linear HGHE. The use of ambient air as a low-temperature heat pump source was considered to be the least advantageous in terms of its temperature parameters.


2011 ◽  
Vol 32 (3) ◽  
pp. 57-70 ◽  
Author(s):  
Dariusz Mikielewicz ◽  
Jarosław Mikielewicz

Utilisation of bleed steam heat to increase the upper heat source temperature in low-temperature ORC In the paper presented is a novel concept to utilize the heat from the turbine bleed to improve the quality of working fluid vapour in the bottoming organic Rankine cycle (ORC). That is a completely novel solution in the literature, which contributes to the increase of ORC efficiency and the overall efficiency of the combined system of the power plant and ORC plant. Calculations have been accomplished for the case when available is a flow rate of low enthalpy hot water at a temperature of 90 °C, which is used for preliminary heating of the working fluid. That hot water is obtained as a result of conversion of exhaust gases in the power plant to the energy of hot water. Then the working fluid is further heated by the bleed steam to reach 120 °C. Such vapour is subsequently directed to the turbine. In the paper 5 possible working fluids were examined, namely R134a, MM, MDM, toluene and ethanol. Only under conditions of 120 °C/40 °C the silicone oil MM showed the best performance, in all other cases the ethanol proved to be best performing fluid of all. Results are compared with the "stand alone" ORC module showing its superiority.


2019 ◽  
Vol 27 (02) ◽  
pp. 1950012 ◽  
Author(s):  
Zeynab Seyfouri ◽  
Mehran Ameri ◽  
Mozaffar Ali Mehrabian

In the present study, a totally heat-driven refrigeration system is proposed and thermodynamically analyzed. This system uses a low-temperature heat source such as geothermal energy or solar energy to produce cooling at freezing temperatures. The proposed system comprises a Rankine cycle (RC) and a hybrid GAX (HGAX) refrigeration cycle, in which the RC provides the power requirement of the HGAX cycle. An ammonia–water mixture is used in both RC and HGAX cycles as the working fluid. A comparative study is conducted in which the proposed system is compared with two other systems using GAX cycle and/or a single stage cycle, as the refrigeration cycle. The study shows that the proposed system is preferred to produce cooling at temperatures from 2∘C to [Formula: see text]C. A detailed parametric analysis of the proposed system is carried out. The results of the analysis show that the system can produce cooling at [Formula: see text]C using a low-temperature heat source at 133.5∘C with the exergy efficiency of about 20% without any input power. By increasing the heat source temperature to 160∘C, an exergy efficiency of 25% can be achieved.


Sign in / Sign up

Export Citation Format

Share Document