scholarly journals Beam-Column Joint Retrofitting with High Performance Fiber Reinforced Concrete Jacketing

2011 ◽  
Vol 82 ◽  
pp. 577-582 ◽  
Author(s):  
Consuelo Beschi ◽  
Alberto Meda ◽  
Paolo Riva

The possibility of strengthening existing R/C structures with a new technique based on the application of a High Performance Fiber Reinforced Concrete jacket is investigated herein, with the aim of studying the effectiveness of this technique for seismic retrofitting. The results of a beam-column joint full scale test simulating the behavior of existing beam-column joints are presented. The specimen have been subjected first to static loads and after to cyclic actions with increasing amplitude, up to failure. The tests demonstrated that, with the application of a HPFRC jacket, it was possible to remarkably increase the bearing capacity of the columns reaching also an adequate level of ductility, and the resistance of the beam column joints, with very little visible damage, thanks to the tensile strength contribution of HPFRC.

2018 ◽  
Vol 20 (1) ◽  
pp. 348-360 ◽  
Author(s):  
Patricia A. Sarmiento ◽  
Benjamín Torres ◽  
Daniel M. Ruiz ◽  
Yezid A. Alvarado ◽  
Isabel Gasch ◽  
...  

Author(s):  
Igor Chilin ◽  

Приведены результаты исследований и выполнена оценка влияния технологических факторов на реологические свойства самоуплотняющихся сталефибробетонных смесей, определены кратковременные и длительные физико-механические и деформативные характеристики сверхвысокопрочного сталефибробетона, включая определение его фактической морозостойкости.


Buildings ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 63
Author(s):  
Anna L. Mina ◽  
Michael F. Petrou ◽  
Konstantinos G. Trezos

The scope of this paper is to investigate the performance of ultra-high performance fiber reinforced concrete (UHPFRC) concrete slabs, under projectile impact. Mixture performance under impact loading was examined using bullets with 7.62 mm diameter and initial velocity 800 m/s. The UHPFRC, used in this study, consists of a combination of steel fibers of two lengths: 6 mm and 13 mm with the same diameter of 0.16 mm. Six composition mixtures were tested, four UHPFRC, one ultra-high performance concrete (UHPC), without steel fibers, and high strength concrete (HSC). Slabs with thicknesses of 15, 30, 50, and 70 mm were produced and subjected to real shotgun fire in the field. Penetration depth, material volume loss, and crater diameter were measured and analyzed. The test results show that the mixture with a combination of 3% 6 mm and 3% of 13 mm length of steel fibers exhibited the best resistance to projectile impact and only the slabs with 15 mm thickness had perforation. Empirical models that predict the depth of penetration were compared with the experimental results. This material can be used as an overlay to buildings or to construct small precast structures.


Sign in / Sign up

Export Citation Format

Share Document