Design and Study of Gate-Type Steel-Shuttering Jumbo for Tunnel Lining Based on CAD/CAE

2011 ◽  
Vol 84-85 ◽  
pp. 14-18
Author(s):  
Wei Ping Peng ◽  
Jun Yi Xia ◽  
Zhi Qiang Zhang

The gate-type steel-shuttering jumbo is key construction equipment for tunnel lining, which is usually designed for customization according to the shape and size of the tunnel. Aiming at the insufficiency of existing methods in the jumbo design, the CAD/CAE technology is introduced into the domains of the jumbo design. In this paper, the gate-type steel-shuttering jumbo for spillway lining in Xiluodu hydropower station is designed, and virtual assembly is established based on three-dimensional digital model using Pro/E software. The stress and strain of the jumbo under different working conditions are analyzed by ANSYS. The result of finite element analysis can be regarded as the basis of structure design and optimization of the jumbo, and can be used to verify the design feasibility at the same time.

2011 ◽  
Vol 71-78 ◽  
pp. 3443-3447
Author(s):  
Wei Ping Peng ◽  
Yan Ting Huang ◽  
Dao Ming Wang

Universal-rod steel-shuttering jumbo (URSSJ), as a key construction equipment for tailrace tunnel lining of underground plant in Pubugou hydropower station, has a good reusability in structure but must satisfy the requirements of intensity, rigidity and supporting stability. Due to complicated working conditions of the URSSJ, it is difficult to calculate stress and strain of the URSSJ based on traditional design method. In this paper, finite element technology is introduced into the analysis of the URSSJ. The approach of this work includes steps of (1) analyzing the structure, working conditions and load characteristics of the URSSJ, (2) modeling the hinge system by meshing, loading and boundary constraints, and (3) computing stress and strain of its major components under the most dangerous condition. The results verify design feasibility and structural reliability of the URSSJ.


2014 ◽  
Vol 556-562 ◽  
pp. 1030-1033
Author(s):  
Yuan Pan

Full-automatic hydraulic press is widely used in ceramic industry for pressing the adobe of all kinds of specific ceramic tiles, so it is also referred to as ceramic press. The upper beam is one of the most critical stressed members of the ceramic press. The paper took 21MN ceramic press as the research object, completed the finite element static analysis of its upper beam. First established the three-dimensional model of the beam by CAD software Pro/ENGINEER, and then imported the model into CAE software ANSYS and analyzed the stress and strain distribution in detail. The results can provide some useful reference for ceramic press design and optimization.


Author(s):  
Syakirah Mohamed Amin ◽  
Muhammad Hanif Ramlee ◽  
Hadafi Fitri Mohd Latip ◽  
Gan Hong Seng ◽  
Mohammed Rafiq Abdul Kadir

Millions in the world suffering diabetes mellitus depends on insulin therapy to control their blood glucose level daily. However, the painful daily injections they need to take could lead to other complications if it is not done correctly. To date, it is suggested by many researchers and medical doctors that the needles should be inserted at any angles of 90º or 45º. Nevertheless, this recommendation has not been supported by clinical or biomechanical evaluation. Hence, this study evaluates the needle insertion for insulin therapy to find the favourable angles in order to reduce injury and pain onto the skin. Finite element analysis was done by  simulating the injection of three-dimensional (3D) needle model into a 3D skin model. The insertions were simulated at two different angles, which are 45ºand 90º with two different lengths of needles; 4 mm and 6 mm. This study concluded the favourable angle for 4 mm needle to be 90º while 6 mm needle was best to be inserted at 45º as these angles exerted the least maximum stress and strain onto the skin.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Zhiyong Yang ◽  
Yaowen Ding ◽  
Yusheng Jiang ◽  
Kuanda Fang ◽  
Linwei Dong ◽  
...  

In this study, the reasonable construction sequence of an overlapping tunnel shield is investigated. Taking the overlapping tunnel of Tianjin Metro Line 5 as the background, a three-dimensional numerical model was established using Flac3D software to study the influence of the “first up and then down” and “first down and then up” construction sequences of the overlapping tunnel on the surface settlement, stratum displacement, lining radial stress, and displacement. The research results show that the shape and width of the final settlement tank on the ground under the two conditions are basically the same, and the difference between the maximum cumulative settlements is small. The accumulated ground settlement caused by the first up and then down construction sequence is 1.8 mm larger than that caused by the first down and then up sequence. The difference between the two working conditions on the vertical displacement of the stratum mainly occurs in the middle stratum of the upper and lower tunnels, and the proportion of the strata in the uplifted state and subsidence state is different. The construction sequence has little effect on the radial stress on the lining of the upper and lower tunnels. Under these two conditions, the excavation of the second tunnel causes a small change in the radial stress of the preceding tunnel lining, both within 4.2%. Under the working condition of first down and then up, the construction of the second tunnel causes the lining of the preceding tunnel to rise by 7.2∼9.2 mm. Under the condition of first up and then down, the construction of the second tunnel causes the lining of the preceding tunnel to sink again by 9.1∼10.4 mm. By comparing the effects of the two working conditions on the stratum and the tunnel lining, it is recommended that the construction be carried out in the order of first down and then up.


2012 ◽  
Vol 215-216 ◽  
pp. 847-850
Author(s):  
Shou Jun Wang ◽  
Xing Xiong ◽  
Hong Jie Wang

In the condition of alternating impact ,the nut-supports subassembly is analyzed according to uncertainty of design parameters. Firstly, a three-dimensional (3-D) finite element (FE) model of the nut-supports subassembly is built and is meshed,and the constraints and loads are imposed.Secondly,the model of nut-supports was assembled using the software ANSYS to understand the stress distribution and various parts of the deformation of the nut-supports and its weak links in the harmonic forces.Finally,socket head cap screw has not enough pre-load in the condition of alternating impact and will be simplified.It is analyzed and checked whether it is cut or not; which provides the reference data for design and optimization of the wave maker.


2014 ◽  
Vol 926-930 ◽  
pp. 3042-3045
Author(s):  
Si Cong Yuan ◽  
Xin Guo ◽  
Xiao Yu Wang ◽  
Xi Yong Pei

The three-dimensional solid models of five different length and shaft diameter anchor of bolt were constructed based on ANSYS software, and making static analysis and modal analysis on it to obtain the stress nephogram and natural frequency of bolt. Research on the stress condition of bolt in static analysis. In modal analysis, researching on the effect regular of the change of length and shaft diameter size on the bolt transverse vibration, the longitudinal and torsional vibration of three natural modes of different frequency, providing a reference for the structure design and reasonable choice of bolt type for corresponding condition.


2011 ◽  
Vol 83 ◽  
pp. 261-266
Author(s):  
Bin Li ◽  
Guo Biao Yang ◽  
Fan Ni ◽  
Qi Rong Zhu

Dynamic photoelasticity has been widely utilized to investigate the phenomena generated by impact loading. The dynamic parameters of structures, such as propagation of stress wave and stress concentration, are obtained through this method, which provide guidelines for structure design and optimization. In the previous studies, two-dimensional models are wildly used by researchers. In these models, the inaccuracy of the boundary conditions leads to error amplification during the conversion of the tested results into real ones. In this study of dynamic photoelasticity, three-dimensional models are used. An improved digital dynamic photoelastic system is also adopted to calculate elastic wave propagation in the medium, where the diode-pumped solid-state green laser and high-speed CCD are used as light source luminaries and recording system respectively. Based on these models, where the boundary conditions approach to true value, the resulting data are higher in resolution than is possible with other experimental techniques. This method has been adopted and tested successfully by generating better results with less amplification of errors.


2018 ◽  
Vol 140 (10) ◽  
Author(s):  
Kathryn M. Olesnavage ◽  
Victor Prost ◽  
William Brett Johnson ◽  
Amos G. Winter

A method is presented to optimize the shape and size of a passive, energy-storing prosthetic foot using the lower leg trajectory error (LLTE) as the design objective. The LLTE is defined as the root-mean-square error between the lower leg trajectory calculated for a given prosthetic foot's deformed shape under typical ground reaction forces (GRFs), and a target physiological lower leg trajectory obtained from published gait data for able-bodied walking. Using the LLTE as a design objective creates a quantitative connection between the mechanical design of a prosthetic foot (stiffness and geometry) and its anticipated biomechanical performance. The authors' prior work has shown that feet with optimized, low LLTE values can accurately replicate physiological kinematics and kinetics. The size and shape of a single-part compliant prosthetic foot made out of nylon 6/6 were optimized for minimum LLTE using a wide Bezier curve to describe its geometry, with constraints to produce only shapes that could fit within a physiological foot's geometric envelope. Given its single part architecture, the foot could be cost effectively manufactured with injection molding, extrusion, or three-dimensional printing. Load testing of the foot showed that its maximum deflection was within 0.3 cm (9%) of finite element analysis (FEA) predictions, ensuring the constitutive behavior was accurately characterized. Prototypes were tested on six below-knee amputees in India—the target users for this technology—to obtain qualitative feedback, which was overall positive and confirmed the foot is ready for extended field trials.


Sign in / Sign up

Export Citation Format

Share Document