construction sequence
Recently Published Documents


TOTAL DOCUMENTS

89
(FIVE YEARS 16)

H-INDEX

10
(FIVE YEARS 0)

Geosciences ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 41
Author(s):  
Md Shariful Islam ◽  
Magued Iskander

A parametric study that examines the ground surface settlement due to the excavation of shallow offset arrangement twin tunnels is presented. Offset arrangement tunnels are those that run parallel to each other, but at different elevations. The study focuses on the influence of both the construction sequence and various geometric parameters on the induced soil settlement. A series of three-dimensional finite element analyses was carried out to investigate the settlement behavior and interactions between offset arrangement twin tunnels excavated in clay using a simplified mechanized excavation method. Analyses were carried out for three cover-to-diameter (C/D) ratios, three possible construction sequences, five angular relative positions, and five angular spacings. In addition, settlement data were also investigated by varying horizontal and vertical spacings while keeping the angular spacing constant. The total settlement of the excavated twin tunnels and the settlement induced solely by the new second tunnel are both presented, and special attention was paid to identifying the dominant geometric parameters. The observed data trends from this study are generally consistent with the limited data available in the literature. This study confirmed a few perceived behaviors. First, angular relative position better describes the settlement behavior in comparison to angular spacing. Second, the effect of the vertical distance is noticeably more significant than that of the horizontal distance between the two tunnels. Third, excavation of the lower tunnel at first induces higher total ground settlement than when the upper tunnel is excavated first or when both tunnels are excavated concurrently. Fourth, settlement due to the construction of the newer tunnel decreases with the increase in the cover depth. In addition, two design charts have been proposed to calculate the settlement induced from a new second tunnel excavation and the eccentricity of the maximum total settlement relative to the center of the new tunnel.


2022 ◽  
Vol 119 ◽  
pp. 104230
Author(s):  
Jiangwei Shi ◽  
Jiaqi Wei ◽  
Charles W.W. Ng ◽  
Hu Lu ◽  
Shaokun Ma ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Kan Huang ◽  
Yiwei Sun ◽  
Xianqiang Huang ◽  
Yujian Li ◽  
Meng Jiang ◽  
...  

Shield tunneling activities inevitably pass through pile foundations at close distance in densely urban areas. Various studies have investigated the interaction between newly constructed tunnels and existing pile foundations. However, the influence of different construction sequences of twin paralleled shield tunneling on single long pile is seldom considered. A case was found in the project of Changsha Metro Line 5, where the twin paralleled tunnels were constructed near the Wanjiali Viaduct piles. A three-dimensional finite element model was established to analyze the pier settlement, ground surface settlement trough, and the vertical and horizontal displacement of pile under different construction sequences in layered soil. The results show that the adjacent pile and surrounding environment are affected substantially with the change of construction sequence of twin paralleled tunnels. The construction sequence of condition (b), in which the tunnel closer to the pile foundation is first constructed and then the tunnel farther away from the pile foundation is second constructed, can reduce the settlement of pier by 13.1%, the maximum surface settlement by 7.0%, the maximum vertical displacement of pile foundation by 7.9%, and the maximum horizontal displacement by 6.9%. The present findings can provide reference for similar projects.


Author(s):  
Shweta S. Bhade

While analyzing a multistorey building frame, conventionally all the probable loads are applied after modeling the entire building frame. But in practice the frame is constructed in various stages. Accordingly, the stability of frame varies at every construction stage. Even during construction freshly placed concrete floor is supported by previously cast floor by formwork. Thus, the loads assumed in conventional analysis will vary in transient situation. Obviously, results obtained by the traditional analysis will be unsuitable. Therefore, the frame should be analyzed at every construction stage taking into account variation in loads. The phenomenon known as Construction Sequence Analysis considers these uncertainties precisely. Therefore, the building structure should be analysed at every stage of construction taking into account the load variations. In this project two cases have been considered. Whereas in Case 1 the multistoried building (G+22 storied) with floating columns and transfer girder will be analysed by response spectrum method and considering P-delta effect as a whole for the subjected loading and in Case 2 the multistoried building (G+22storied) with floating columns and transfer girder will be analysed by response spectrum method with reference to the construction sequence or staged construction and considering P-delta effect. In the present study a G+22 storey multistoried R.C.C building model is modelled using Etabs 2019 software. Response spectrum analysis is made by considering building situated in zone III.Building models are analyzed by Etabs 2019 software to study the effect of maximum positive moment, maximum negative moment, maximum shear forces, maximum deflection, maximum torsion moment of transfer girder beam and total axial load under transfer girder and floating column etc


2021 ◽  
Author(s):  
Karel Terwel

<p>In 2011 the city of Enschede was shocked by the collapse of the roof of an extension for the FC Twente stadium. The structure collapsed during construction and two fatalities and nine injuries were recorded. The cantilevering steel roof structure was covered with corrugated steel sheets and stabilized by bracings. Investigation showed that the structure was already loaded with the finishing structure before it was completed and stabilized. Contributing influencing human and organizational factors to the incident were the tight schedule resulting in a flawed construction sequence. Furthermore, there was too little attention to the way of execution during design, unjustified trust between parties resulting in inadequate coordination, checking and allocation of responsibilities.</p>


Sign in / Sign up

Export Citation Format

Share Document