scholarly journals Mechanical properties of natural fiber reinforced polymer (NFRP) composites using anahaw (Saribus rotundifolius) fibers treated with sodium alginate

2017 ◽  
Vol 8 (7) ◽  
pp. 66-73
Author(s):  
P. Tumolva T. ◽  
K. R. Vitoa J. ◽  
C. R. Ragasaa J. ◽  
M. C. Dela Cruza R.
2017 ◽  
Vol 867 ◽  
pp. 41-47 ◽  
Author(s):  
Chitra Umachitra ◽  
N.K. Palaniswamy ◽  
O.L. Shanmugasundaram ◽  
P.S. Sampath

Natural fibers have been used to reinforce materials in many composite structures. Many types of natural fibers have been investigated including flax, hemp, ramie, sisal, abaca, banana etc., due to the advantage that they are light weight, renewable resources and have marketing appeal. These agricultural wastes can also be used to prepare fiber reinforced polymer hybrid composites in various combinations for commercial use. Application of composite materials in structural applications has presented the need for the engineering analysis. The present work focuses on the fabrication of polymer matrix composites by using natural fibers like banana and cotton which are abundant in nature and analysing the effect of mechanical properties of the composites on different surface treatments on the fabric. The effect of various surface treatments (NaOH, SLS, KMnO4) on the mechanical properties namely tensile, flexural and impact was analyzed and are discussed in this project. Analysing the material characteristics of the compression moulded composites; their results were measured on sections of the material to make use of the natural fiber reinforced polymer composite material for automotive seat shell manufacturing.


2021 ◽  
Vol 23 (06) ◽  
pp. 923-931
Author(s):  
Sami Hamid ◽  
◽  
Abhishek Thakur ◽  

Hybrid composites are made by combining natural and synthetic fibers with an effective matrix, which usually means they’ve received additional strengthening, such as epoxy, to create the additional material properties you can’t obtain on their own. To attain the desirable tensile modulus, compressive modulus, and so on, a fiber composite needs to be added to the FRP (Fiber Reinforced Polymer). Polymer matrix composites are light and cost-effective to manufacture, but they still friendly to the environment and have viable applications, which is why they are often used in various commercial applications. Unidirectional fibers and bidirectionally reinforced with epoxy (SikaDur is a composite medium) carbon fibers are two-way reinforced with unidirectional (use unidirectional) Before we developed test procedures for preparing the test specimens, the testing lab implemented the layup method according to ASTM standards. Ten separate stacking sequences were tested and four different intensity sequences were used in testing the compressive structures according to ASTM D15. The results of the study indicate that hybridization helps natural fiber-reinforced polymer composites to increase their mechanical properties We would use natural fibers rather than synthetic ones since the natural ones make comparable strength when hybridized with synthetic ones.


2021 ◽  
Vol 891 ◽  
pp. 125-130
Author(s):  
Subrata Chandra Das ◽  
Debasree Paul ◽  
Mubarak Ahmad Khan ◽  
Sotirios A. Grammatikos ◽  
Styliani Papatzani

Recently, natural fiber reinforced polymer composites have become popular over traditional synthetic fiber reinforced polymer composites for automotive, low demanding structural and semi-structural applications. In this work, a comparative study of a natural fiber composite such as jute fabric composite (JFRP) and synthetic fiber composite such as glass fiber composite (GFRP) is presented. The composites were manufactured using hand lay-up and then curing at 90°C for 10 min in a hot press, followed by 24 h room temperature post-curing. The mechanical properties such as tensile and bending of JFRP and GFRP composites, were evaluated and compared. It was revealed that even if GFRPs exhibited significantly higher mechanical properties than JFRPs, environmental impact would still favor JFRPs for non-structural and low load bearing applications.


2013 ◽  
Vol 24 ◽  
pp. 34-45 ◽  
Author(s):  
P.N.E. Naveen ◽  
T. Dharma Raju

Fiber-reinforced polymer composites have played a dominant role for a longtime in a variety of applications for their high specific strength and modulus. The fiber which serves as a reinforcement in reinforced plastics may be synthetic or natural. Past studies show that only synthetic fibers such as glass, carbon etc., have been used in fiber-reinforced plastics. Although glass and other synthetic fiber-reinforced plastics possess high specific strength, their fields of application are very limited because of their inherent higher cost of production. An attempt has been made to utilize the coir, as natural fiber abundantly available in India. Natural fibers are not only strong and lightweight but also relatively very cheap. The present work describes the development and characterization of a new set of natural fiber based polyester composites consisting of coir as reinforcement and epoxy resin. Coir composites are developed and their mechanical properties are evaluated, at five different volume fractions and tests were carried out and the results were presented. Experimental results showed tensile, static and Dynamic properties of the composites are greatly influenced by increasing the percentage of reinforcement, and indicate coir can be used as potential reinforcing material for many structural and non-structural applications.


Sign in / Sign up

Export Citation Format

Share Document