Waste Prevention in the Prefabricated Building Sector

2019 ◽  
Vol 887 ◽  
pp. 361-368
Author(s):  
Fritz Kleemann ◽  
Dominik Laner ◽  
David Laner

The present study investigates waste generation during the production and erection phase of a prefabricated single family house in Austria as a basis for identifying waste prevention potentials. Therefore, the material composition of a case study building (wood frame construction) is compared to waste generated during production and erection. In order to assess the whole life cycle of prefabricated buildings the use phase as well as the end-of-life phase are also considered. Examples are given to show how different measures can impact the generation of waste directly and indirectly. The results show that production and erection are already very efficient with regard to waste generation and prevention potentials mainly exist in further offcut reduction and optimization in packaging. The use phase and the end-of-life of the building are more complex to investigate and waste prevention potentials are less tangible. However, important measures for waste reduction are related to the easy exchangeability of building components as well as their reusability. The lifetime extension of the building and building components, which can be achieved through proper operation and maintenance, can be considered a key issue for preventing waste in the building sector.

2019 ◽  
Vol 282 ◽  
pp. 02015
Author(s):  
Stéphanie Van Linden ◽  
Nathan Van Den Bossche

Watertightness is still a major source of concern in the performance of the building envelope. Even very small deficiencies can cause a significant amount of water leakage which may result in structural degradation or malfunctioning of the insulation. The risk of water infiltration is highest at joints between different building components and in particular at the window-wall interface due to the complexity of these joints. This paper focuses on the performance of different solutions to ensure the watertightness of the window-wall interface, e.g. self-adhesive foils, liquid applied coatings, prefabricated frames, self-expanding sealing strips. The performance of these solutions is evaluated for different wall assemblies, i.e. ETICS, masonry, structural insulated panels and wood-frame construction. Laboratory experiments were conducted on a full-scale test setup with a window of 1,01 m high and 0,56 m wide. Test results showed that it is not evident to obtain watertight face-sealed window-wall interfaces without an additional airtight layer or drainage possibilities. Water ingress was often recorded at lower pressure differences.


2017 ◽  
Vol 1 (1) ◽  
pp. 91-108
Author(s):  
Maurizio Cellura ◽  
Francesco Guarino ◽  
Sonia Longo

The building sector is one of the most relevant in terms of generation of wealth and occupation, but it is also responsible for significant consumption of natural resources and the generation of environmental impacts, mainly greenhouse gas emissions. In order to improve the eco profile of buildings during their life-cycle, the reduction of the use of resources and the minimization of environmental impacts have become, in the last years, some of the main objectives to achieve in the design of sustainable buildings. The application of the life-cycle thinking approach, looking at the whole life cycle of buildings, is of paramount importance for a real decarbonization and reduction of the environmental impacts of the building sector. This paper presents an application of the life-cycle assessment methodology for assessing the energy and environmental life-cycle impacts of a single-family house located in the Mediterranean area in order to identify the building components and life-cycle steps that are responsible of the higher burdens. The assessment showed that the largest impacts are located in the use stage; energy for heating is significant but not dominant, while the contribution of electricity utilized for households and other equipment resulted very relevant. High environmental impacts are also due to manufacture and transport of building materials and components.


2021 ◽  
Author(s):  
Austin Todd

This study contributes to the development of quantifying and understanding building air tightness as it relates to Toronto semi-detached and row homes, particularly party walls. While infiltration characteristics of single family detached homes have been widely developed and understood, the isolation of semi-detached and row home single family dwelling units is relatively unexplored. When quantifying air leakage in a building attached to an adjacent dwelling unit, air is drawn through the exterior envelope as well as the party wall (i.e. shared common wall). The purpose of the proposed testing method, guarded blower door testing, is to isolate air leakage through the party wall from the envelope. Currently the party wall is considered a fire-rated assembly but is not part of the air barrier system. Issues associated with party wall air leakage include spread of fire, indoor air quality, transfer of tobacco smoke between dwellings, and heat loss through the party to attic detail. Data collected on buildings constructed between 1890 and 1920 (Century buildings) has been compared to the data collected on buildings constructed between 2012 to 2017 (new buildings). Air leakage has been collected on twenty-six of Century semi-detached homes with solid masonry construction and twenty-one new semi-detached/row homes of lightweight wood frame construction. Each unit was tested independently and simultaneously, or “guarded”, with the adjacent unit, to pressure neutralize allowing for quantification of envelope and party wall air leakage. Party wall leakage was found to be similar to leakage through the exterior walls. The leakage accounted for 22% of the total infiltration in Century old buildings and 38% in Modern dwellings.


2021 ◽  
Author(s):  
Austin Todd

This study contributes to the development of quantifying and understanding building air tightness as it relates to Toronto semi-detached and row homes, particularly party walls. While infiltration characteristics of single family detached homes have been widely developed and understood, the isolation of semi-detached and row home single family dwelling units is relatively unexplored. When quantifying air leakage in a building attached to an adjacent dwelling unit, air is drawn through the exterior envelope as well as the party wall (i.e. shared common wall). The purpose of the proposed testing method, guarded blower door testing, is to isolate air leakage through the party wall from the envelope. Currently the party wall is considered a fire-rated assembly but is not part of the air barrier system. Issues associated with party wall air leakage include spread of fire, indoor air quality, transfer of tobacco smoke between dwellings, and heat loss through the party to attic detail. Data collected on buildings constructed between 1890 and 1920 (Century buildings) has been compared to the data collected on buildings constructed between 2012 to 2017 (new buildings). Air leakage has been collected on twenty-six of Century semi-detached homes with solid masonry construction and twenty-one new semi-detached/row homes of lightweight wood frame construction. Each unit was tested independently and simultaneously, or “guarded”, with the adjacent unit, to pressure neutralize allowing for quantification of envelope and party wall air leakage. Party wall leakage was found to be similar to leakage through the exterior walls. The leakage accounted for 22% of the total infiltration in Century old buildings and 38% in Modern dwellings.


2008 ◽  
Vol 35 (10) ◽  
pp. 1163-1176
Author(s):  
Mehdi H.K. Kharrazi ◽  
Salah Eldeib ◽  
Helmut G.L. Prion

Canadian Wooden Dome (CWD) is an innovative orthotropic, monolithic modular sectional building system. The main frame of these structures is built using mill trim ends that are normally chipped or used for finger-jointing. The structure, in comparison to conventional wood-frame single-family housing, has a rapid manufacturing process, and quick, on-site assembly attempts to reduce overall construction time. Presented with these advantages and the uniqueness of the wooden-dome system, a technical study was initiated to investigate the structural performance of the modular wooden dome in earthquake-prone areas and to examine its load resistance to heavy snow. This paper describes the results from a series of static and dynamic load tests conducted on the CWD as part of this study. The test results generally indicated that based on the structural performance of the CWD under static and dynamic loads, the CWD could be an alternative to the conventional wood-frame construction system. The test results are then compared with those obtained from the tests conducted on conventional single-family wood-frame houses as part of the Earthquake 99 (EQ-99) Woodframe House Project at The University of British Columbia. The seismic performance of the CWD was superior to that of the nonengineered housing system and comparable to that of the engineered wood-frame housing system.


Urban Science ◽  
2021 ◽  
Vol 5 (1) ◽  
pp. 20
Author(s):  
Kikki Lambrecht Ipsen ◽  
Massimo Pizzol ◽  
Morten Birkved ◽  
Ben Amor

The building sector is responsible for extensive resource consumption and waste generation, resulting in high pressure on the environment. A way to potentially mitigate this is by including environmental considerations during building design through the concept known as eco-design. Despite the multiple available approaches of eco-design, the latter is not easily achieved in the building sector. The objective of this paper is to identify and discuss what barriers are currently hindering the implementation of eco-design in the building sector and by which measures building designers can include environmental considerations in their design process. Through a systematic literature review, several barriers to implementation were identified, the main ones being lack of suitable legislation, lack of knowledge amongst building designers, and lack of suitable tools for designers to use. Furthermore, two specific tools were identified that allow the inclusion of environmental consideration in building design, along with nine design strategies providing qualitative guidance on how to potentially minimize energy and material consumption, as well as waste generation. This paper contributes a holistic overview of the major barriers to and existing tools and method for the eco-design of buildings, and provides guidance for both future research and practice.


2020 ◽  
Vol 70 (4) ◽  
pp. 428-438
Author(s):  
Sigong Zhang ◽  
Ying Hei Chui ◽  
David Joo

Abstract Panelized light wood frame construction is becoming more popular due to the faster construction time and shortage of onsite skilled labor. To use light wood frame panels effectively in panelized floor systems, panel-to-panel joints must be fastened adequately to allow load transfer between panels. They must also possess in-plane shear strength and stiffness comparable to stick-built, staggered-sheathed assemblies. This study was designed to develop efficient and effective panel-to-panel joints for connecting adjacent floor panels built with wood I-joists and evaluate the efficiency of the joints in achieving diaphragm action. At first, a number of these panel-to-panel joints were tested in the laboratory using a small-scale diaphragm test setup to determine their efficiency in transferring in-plane forces between panels. Test results showed that a small decrease in in-plane stiffness was expected for the most effective joints, but their strengths were significantly higher than at the same location in a conventional site-built floor diaphragm. The presence of blockings and use of two-row nailing were found to considerably improve stiffness and strength. These features can be used to mitigate the potential reduction in mechanical performance of panelized floor construction, in comparison with the site-built wood I-joist floor.


Author(s):  
Salvatore Viscuso

The architecture design today has new expressive features due to the parametric and computational modelling software, which greatly amplify the potential of language. This condition makes it possible to generate customised elements and systems through a process of cyber-physical interaction between design and architectural production. As well as the geometric constraints, dictated by manufacturing and assembly processes of materials, they can be incorporated in the generative design codes. The article examines the possibility to also include the main conditions that enable the selective disassembly of the elements and their reuse at the end of life, avoiding the generation of parts that are not remanufacturable or reusable.


2021 ◽  
Vol 16 (1) ◽  
pp. 61-90
Author(s):  
Selçuk Sayin ◽  
Godfried Augenbroe

ABSTRACT This paper introduces methodologies and optimal strategies to reduce the energy consumption of the building sector with the aim to reduce global energy usage of a given .region or country. Many efforts are underway to develop investment strategies for large-scale energy retrofits and stricter energy design standards for existing and future buildings. This paper presents a study that informs these strategies in a novel way. It introduces support for the cost-optimized retrofits of existing, and design improvements of new buildings in Turkey with the aim to offer recommendations to individual building owners as well as guidance to the market. Three building types, apartment, single-family house and office are analyzed with a novel optimization approach. The energy performance of each type is simulated in five different climate regions of Turkey and four different vintages. For each vintage, the building is modelled corresponding to local Turkish regulations that applied at the time of construction. Optimum results are produced for different goals in terms of energy saving targets. The optimization results reveal that a 50% energy saving target is attainable for the retrofit and a 40% energy saving target is attainable for new design improvements for each building type in all climate regions.


Sign in / Sign up

Export Citation Format

Share Document