Determining of Damages Caused by Fire on Photovoltaic Power Stations

2014 ◽  
Vol 1001 ◽  
pp. 282-287
Author(s):  
Zdeněk Kadlec ◽  
Milos Kvarčak ◽  
Adam Thomitzek ◽  
Martin Trčka

The fire produce harms and damage environment. The fire assessment of photovoltaic power stations is based on testimony, photographic and some next records of during fire, data recorded by Weather Station of photovoltaic’ s station and from inspection of fireplace after extinguishing of fire.

The paper presents a classification of solar tracking systems used in photovoltaic power stations (PVS) and their operating principles. A simulation model of a grid-connected 5-kW PVS has been developed in PVsyst, to which end the researchers selected PVS equipment and optimized the PV cell tilt angles. The paper further analyzes a grid-connected PVS in Orenburg Oblast in PVsyst under the following configurations: static PV cells, not tilted vs seasonally varied tilts; single-axis solar trackers with vertical and horizontal axes of rotation vs a dual-axis solar tracker. The analysis is based on solar insolation data for 2019 obtained from the research team’s HP-2000 weather station. Dual-axis solar tracker and single-axis vertical trackers are shown to have the best year-round generation, providing an increase of 13.2% and 11.5%, respectively, against the static PV cells (no change in tilt).


2021 ◽  
Vol 11 (2) ◽  
pp. 727 ◽  
Author(s):  
Myeong-Hwan Hwang ◽  
Young-Gon Kim ◽  
Hae-Sol Lee ◽  
Young-Dae Kim ◽  
Hyun-Rok Cha

In recent years, photovoltaic (PV) power generation has attracted considerable attention as a new eco-friendly and renewable energy generation technology. With the recent development of semiconductor manufacturing technologies, PV power generation is gradually increasing. In this paper, we analyze the types of defects that form in PV power generation panels and propose a method for enhancing the productivity and efficiency of PV power stations by determining the defects of aging PV modules based on their temperature, power output, and panel images. The method proposed in the paper allows the replacement of individual panels that are experiencing a malfunction, thereby reducing the output loss of solar power generation plants. The aim is to develop a method that enables users to immediately check the type of failures among the six failure types that frequently occur in aging PV panels—namely, hotspot, panel breakage, connector breakage, busbar breakage, panel cell overheating, and diode failure—based on thermal images by using the failure detection system. By comparing the data acquired in the study with the thermal images of a PV power station, efficiency is increased by detecting solar module faults in deteriorated photovoltaic power plants.


2013 ◽  
Vol 57 (1) ◽  
pp. 24-33 ◽  
Author(s):  
Dragos Isvoranu ◽  
Viorel Badescu

Abstract The paper presents a comparative analysis between the surface global irradiation measured for Romania and the predicted irradiation obtained by numerical simulation. The measured data came from the Romanian National meteorological Administration. Based on a preliminary analysis that took into account several criteria among which, performance, cost, popularity and meteorological and satellite data accessibility we concluded that a combination GFS-WRF(NMM) or GFS-WRF(ARW) is most suitable for short term global solar irradiation forecasting in order to assess the performance of the photovoltaic power stations (Badescu and Dumitrescu, 2012, [1], Martin et al., 2011, [2]).


2018 ◽  
Vol 179 ◽  
pp. 483-502 ◽  
Author(s):  
Bin Huang ◽  
Zhengnong Li ◽  
Zhefei Zhao ◽  
Honghua Wu ◽  
Huafei Zhou ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document