Research on Applied-Information Technology with PM2.5 Generation and Evolution Model Based on BP Neural Network

2014 ◽  
Vol 1003 ◽  
pp. 226-229 ◽  
Author(s):  
Ying Hong Xie ◽  
Xiao Wei Han ◽  
Qi Li

In this paper, BP neural network model is used to establish the occurrence and evolution model of PM2.5 in an area in Xi'an city. In the model, wind, humidity, season, SO2,NO2,PM10, CO,O3 (in one hour ) and O3 (in eight hours ) and other influence factors are all considered. The model has good reliability, it can accurately forecast the value of PM2.5 and its variation in the near future, which can provide the basis for the PM2.5 control.

2014 ◽  
Vol 505-506 ◽  
pp. 274-277
Author(s):  
Bin Wang ◽  
Yong Tao Gao

To get the quantified indexes of comprehensive capacity about project manager, based on the modal on artificial neural network theory, different influence factors about choice of project manager for highway slope treatment were analyzed , identified, quantified and evaluated , then comprehensive capacity of the manager were analyzed. Such procedure provided a new method for choice of project manager for highway slope treatment.


2011 ◽  
Vol 66-68 ◽  
pp. 788-792
Author(s):  
Xuan Luo ◽  
Shi Jie Wang ◽  
Xiao Ren Lv

The wear to orthogonal metals of NBR is the main cause of affecting the endurance of ESPCP. The rotational speed, load and temperature are main influence factors of the wear of 45 steel. The BP neural network model used in the forecast of the 45 steel wear volume was established. The 45 steel wear volume was obtained using friction and wear machine under different experimental parameters. The wear volumes of different experimental parameters were forecasted using BP neural network. The results indicate that it is feasible to forecast the rotational speed, load and temperature to 45 steel wear volume.


2012 ◽  
Vol 619 ◽  
pp. 3-8 ◽  
Author(s):  
Hong Gao ◽  
Zhi Liang Fu

The influence factors of rock blasting fragmentation distribution are analyzed, 10 main influence factors are selected from these. Using the MATLAB BP neural network model system to analyze blasting fragmentation distribution of +860 level face at Yi Chun tantalum-niobium mine, successfully predicted the blasting fragmentation distribution, it is favorable to design the blasting parameters and industrial production.


2016 ◽  
Vol 6 (2) ◽  
pp. 942-952
Author(s):  
Xicun ZHU ◽  
Zhuoyuan WANG ◽  
Lulu GAO ◽  
Gengxing ZHAO ◽  
Ling WANG

The objective of the paper is to explore the best phenophase for estimating the nitrogen contents of apple leaves, to establish the best estimation model of the hyperspectral data at different phenophases. It is to improve the apple trees precise fertilization and production management. The experiments were done in 20 orchards in the field, measured hyperspectral data and nitrogen contents of apple leaves at three phenophases in two years, which were shoot growth phenophase, spring shoots pause growth phenophase, autumn shoots pause growth phenophase. The study analyzed the nitrogen contents of apple leaves with its original spectral and first derivative, screened sensitive wavelengths of each phenophase. The hyperspectral parameters were built with the sensitive wavelengths. Multiple stepwise regressions, partial least squares and BP neural network model were adopted in the study. The results showed that 551 nm, 716 nm, 530 nm, 703 nm; 543 nm, 705 nm, 699 nm, 756 nm and 545 nm, 702 nm, 695 nm, 746 nm were sensitive wavelengths of three phenophases. R551+R716, R551*R716, FDR530+FDR703, FDR530*FDR703; R543+R705, R543*R705, FDR699+FDR756, FDR699*FDR756and R545+R702, R545*R702, FDR695+FDR746, FDR695*FDR746 were the best hyperspectral parameters of each phenophase. Of all the estimation models, the estimated effect of shoot growth phenophase was better than other two phenophases, so shoot growth phenophase was the best phenophase to estimate the nitrogen contents of apple leaves based on hyperspectral models. In the three models, the 4-3-1 BP neural network model of shoot growth phenophase was the best estimation model. The R2 of estimated value and measured value was 0.6307, RE% was 23.37, RMSE was 0.6274.


Author(s):  
Lijuan Huang ◽  
Guojie Xie ◽  
Wende Zhao ◽  
Yan Gu ◽  
Yi Huang

AbstractWith the rapid development of e-commerce, the backlog of distribution orders, insufficient logistics capacity and other issues are becoming more and more serious. It is very significant for e-commerce platforms and logistics enterprises to clarify the demand of logistics. To meet this need, a forecasting indicator system of Guangdong logistics demand was constructed from the perspective of e-commerce. The GM (1, 1) model and Back Propagation (BP) neural network model were used to simulate and forecast the logistics demand of Guangdong province from 2000 to 2019. The results show that the Guangdong logistics demand forecasting indicator system has good applicability. Compared with the GM (1, 1) model, the BP neural network model has smaller prediction error and more stable prediction results. Based on the results of the study, it is the recommendation of the authors that e-commerce platforms and logistics enterprises should pay attention to the prediction of regional logistics demand, choose scientific forecasting methods, and encourage the implementation of new distribution modes.


2010 ◽  
Vol 34-35 ◽  
pp. 301-305
Author(s):  
Zhao Qian Zhu ◽  
Jue Yang ◽  
Xiao Ming Zhang ◽  
Xiao Lei Li

This paper studied misfire diagnosis of diesel engine based on short-time vibration characters. Misfire of diesel engine was simulated by the vibration monitoring test. Cylinder vibration signal and top center signal were collected under different states. The short-time vibration signal of each cylinder was intercepted according to the diesel combustion sequence, effective value was calculated, and BP Neural Network model built with this character was used to diagnose diesel misfire. The result shows that this method can locate the misfire cylinder effectively, and it is meaningful for guiding the detection and repair of vehicles.


2021 ◽  
Vol 336 ◽  
pp. 06011
Author(s):  
Haonan Dong ◽  
Ruili Jiao ◽  
Minsong Huang

In order to solve the problem that the shape of cloud particle images measured by airborne cloud imaging probe (CIP) cannot be automatically recognized, this paper proposes an automatic recognition method of cloud and precipitation particle shape based on BP neural network. This method mainly uses a set of geometric parameters which can better describe the shape characteristics of cloud precipitation particles. Based on the cloud precipitation particle images measured by CIP in the precipitation stratiform clouds in northern China, a particle shape data training set and a testing set were constructed to train and verify the effect of the selected BP neural network model. The selected BP neural network model can classify the cloud particle image into tiny, column, needle, dendrite, aggregate, graupel, sphere, hexagonal and irregular. Utilizing the field campaign data measured by CIP, the habit identified results by the improved Holroyd method and by the selected BP neural network model were compared, which shows that the accuracy of BP neural network method is better than that of improved Holroyd method.


Sign in / Sign up

Export Citation Format

Share Document