Comparison of Measured Displacement of the Plate in Interaction with the Subsoil and the Results of 3D Numerical Model

2014 ◽  
Vol 1020 ◽  
pp. 204-209 ◽  
Author(s):  
Jana Labudková ◽  
Radim Čajka

In the context with the solution of interaction of foundation structures and subsoil is complexity of a static solution given mainly by selection of a computational model, effects of physical-nonlinear behaviour of such structure and co-effects of the upper structure and the foundation structure. The purpose of this paper is to compare subsidence of the foundation measured during the experiment and numerical calculations based on FEM. This paper describes how calculated deformations depend on parameters of subsoil modelled by 3D finite elements. The parametric study includes charts of the dependence of resulting deformation on the choice of boundary conditions, on the size of the modeled area represents the subsoil, on the depth of 3D subsoil model and the size of the ground area 3D subsoil model.

Author(s):  
Jana Labudková ◽  
Radim Čajka

Abstract The purpose of this paper is to compare the measured subsidence of the foundation in experiments and subsidence obtained from FEM calculations. When using 3D elements for creation of a 3D model, it is, in particular, essential to choose correctly the size of the modelled area which represents the subsoil, the boundary conditions and the size of the finite element network. The parametric study evaluates impacts of those parameters on final deformation. The parametric study is conducted of 168 variant models.


2007 ◽  
Vol 5 (2) ◽  
pp. 87-94 ◽  
Author(s):  
Esad Mesic

In the paper there is propose of numerical model for nonlinear analysis of steel frames with use of localized nonlinearity. Main concept of model consists of discreet ordering of series nonlinear finite elements - springs "zero length" in the areas of expected frames plastifikations. The frame elements between the sections with nonlinear elements behaved linear. On that way the forces in the elements of frames for the most degrees of freedom are linear in the relation of displacement, but nonlinear behaviour occurs in relatively small number degrees of freedom. This kind of model can be explicitly introduced in consideration of geometrical imperfection, backward stresses and etc. .


2021 ◽  
Vol 42 ◽  
pp. 128-134
Author(s):  
Daniela Pintilie ◽  
Iuliana Florina Pană ◽  
Adrian Malciu ◽  
Constantin Puică ◽  
Cristina Pupăză

High Explosive Mortar bombs are used on the battlefield for destroying the manpower, non-armoured equipment and shelters. The paper describes an original experimental and numerical approach regarding the potential threats caused by the detonation of 120 mm HE mortar bombs. The evaluation of the bomb effect presumes the fulfillment of experimental trials that focus on two physical mechanisms which appear after the detonation of the cased high explosive. These mechanisms are the shock wave generation and the fragments propulsion, which were also studied by a numerical model that provides results over the bomb fragmentation mode. The novelty of the paper consists in the calibrated 3D numerical model confirmed by the experimental data, which provides information over the fragmentation process of the case and the initial velocity of its fragments, proving that the main threat of this type of ammunition is the effect through metal fragments. The results of numerical simulation and experimental data are used for their comparative analysis and the assessment of the phenomena.


2013 ◽  
Vol 66 (4) ◽  
pp. 425-430 ◽  
Author(s):  
Jorge Luis Palomino Tamayo ◽  
Armando Miguel Awruch ◽  
Inácio Benvegnu Morsch

A numerical model using the Finite Element Method (FEM) for the nonlinear static and dynamic analysis of reinforced concrete (RC) beams, plates and shells is presented in this work. For this purpose, computer programs based on plasticity theory and with crack monitoring capabilities are developed. The static analysis of RC shells up to failure load is carried out using 9-node degenerated shell finite elements while 20-node brick finite elements are used for dynamic applications. The elasto-plastic constitutive law for concrete is coupled with a strain-rate sensitive model in order to take into account high loading rate effect when transient loading is intended. The implicit Newmark scheme with predictor and corrector phases is used for time integration of the nonlinear system of equations. In both cases, the steel reinforcement is considered to be smeared and represented by membrane finite elements. Various benchmark examples are solved with the present numerical model and comparisons with other published data are performed. For all examples, the path failure, collapse loads and failure mechanism is reproduced with great accuracy.


Sign in / Sign up

Export Citation Format

Share Document