scholarly journals Comparison of Experimentally Measured Deformation of the Plate on the Subsoil and the Results of 3D Numerical Model

Author(s):  
Jana Labudková ◽  
Radim Čajka

Abstract The purpose of this paper is to compare the measured subsidence of the foundation in experiments and subsidence obtained from FEM calculations. When using 3D elements for creation of a 3D model, it is, in particular, essential to choose correctly the size of the modelled area which represents the subsoil, the boundary conditions and the size of the finite element network. The parametric study evaluates impacts of those parameters on final deformation. The parametric study is conducted of 168 variant models.

Author(s):  
Виктор Григорьевич Чеверев ◽  
Евгений Викторович Сафронов ◽  
Алексей Александрович Коротков ◽  
Александр Сергеевич Чернятин

Существуют два основных подхода решения задачи тепломассопереноса при численном моделировании промерзания грунтов: 1) решение методом конечных разностей с учетом граничных условий (границей, например, является фронт промерзания); 2) решение методом конечных элементов без учета границ модели. Оба подхода имеют существенные недостатки, что оставляет проблему решения задачи для численной модели промерзания грунтов острой и актуальной. В данной работе представлена физическая постановка промерзания, которая позволяет создать численную модель, базирующуюся на решении методом конечных элементов, но при этом отражающую ход фронта промерзания - то есть модель, в которой объединены оба подхода к решению задачи промерзания грунтов. Для подтверждения корректности модели был проделан ряд экспериментов по физическому моделированию промерзания модельного грунта и выполнен сравнительный анализ полученных экспериментальных данных и результатов расчетов на базе представленной численной модели с такими же граничными условиями, как в экспериментах. There are two basic approaches to solving the problem of heat and mass transfer in the numerical modeling of soil freezing: 1) using the finite difference method taking into account boundary conditions (the boundary, for example, is the freezing front); 2) using the finite element method without consideration of model boundaries. Both approaches have significant drawbacks, which leaves the issue of solving the problem for the numerical model of soil freezing acute and up-to-date. This article provides the physical setting of freezing that allows us to create a numerical model based on the solution by the finite element method, but at the same time reflecting the route of the freezing front, i.e. the model that combines both approaches to solving the problem of soil freezing. In order to confirm the correctness of the model, a number of experiments on physical modeling of model soil freezing have been performed, and a comparative analysis of the experimental data obtained and the calculation results based on the provided numerical model with the same boundary conditions as in the experiments was performed.


2012 ◽  
Vol 479-481 ◽  
pp. 2037-2040
Author(s):  
Shan Li ◽  
Bo Gao ◽  
Yu Qi Wang ◽  
Lei Wang

The iron ladle is a kind of large metallurgy equipments and used for collecting and carrying iron water. According to the factual demand of produce, some corporation wanted to enlarge the capacity of the idle from 65t to 75t only by increasing the height of ladle. This paper is aimed at the changing idle which the capacity is 75t and built up its 3D numerical model. According to the constant of the iron water capacity, it used the method of modeling to find the angle of the ladle taphole and made sure the ladle couldn't overturn automatically by studying the process of overturning. Then this paper worked out the overturning moment so that it could provide mechanics data for the analysis of the finite element and the reformation of the corporation.


2020 ◽  
Vol 2020 ◽  
pp. 1-19
Author(s):  
Christiana A. Filippou ◽  
Nicholas C. Kyriakides ◽  
Christis Z. Chrysostomou

A numerical study was conducted to investigate the in-plane behavior of a masonry-infilled reinforced concrete (RC) frame retrofitted with textile-reinforced mortar (TRM). A two-dimensional finite element model was developed using DIANA finite element analysis (FEA) software to simulate the 2 : 3 scaled three-storey masonry-infilled RC frame retrofitted with TRM that was studied experimentally in the past. The three-storey structure used in the test was with a nonseismic design and detailing, and was subjected to in-plane displacement-control cyclic loading. The current study evaluates the capabilities of a representative numerical model to simulate the results of the experimental test, and after the calibration of the numerical model sensitivity analysis and parametric study were performed. In order to create an accurate numerical model, suitable constitutive models, based on the smeared crack approach, were used to characterize the nonlinear response of concrete, masonry infill, and TRM. The calibration of the models was based on the experimental results or inverse fitting based on optimizing the simulation of the response. The numerical model proved capable of simulating the in-plane behavior of the retrofitted masonry-infilled RC frame with good accuracy in terms of initial stiffness, and its deterioration, shear capacity, and cracking patterns. The calibrated model was then used to perform sensitivity analysis in order to examine the influence of infill-frame interface properties (tangential and normal stiffness) on the behavior of the retrofitted infilled frame. The numerical results showed that the gap opening is influenced significantly by the stiffness of the interface. In addition, a parametric study was performed in order to evaluate the importance of the full-bond condition between the TRM and the masonry-infilled RC frame. The numerical results indicate that the composite action between the TRM and the masonry-infilled RC frame improves the global stiffness and lateral resistance of the infilled frame, and it reduces the gap opening between the masonry infill and the RC frame.


Author(s):  
A. Rabiee ◽  
H. Ghasemnejad ◽  
N. Hitchins ◽  
J. Watson ◽  
J. Roberts ◽  
...  

AbstractIn this paper, advanced finite element (FE) methods are developed to investigate the effect of deceleration on the crash dummy test complied with British Standard Engineering (BS EN 1789). These techniques, which are related to material modelling, joints and contacts, offer an advanced numerical model representing an infant incubator with all complex boundary conditions and design contents. It is shown that the response of an infant incubator is a function of the ratchet straps, the tension on the belts, the belt type and the distance of the belts from the edges of the incubator, which can significantly affect the experienced acceleration, by the infant. The validation process is performed against experimental studies and various case parameters such as crash dummy mass and negative acceleration impulse are discussed in detail. The developed numerical model is capable to predict the behaviour of the crash dummy and the incubator in terms of acceleration, trajectory and kinematics by less than 8% error.


1988 ◽  
Vol 1 (21) ◽  
pp. 64
Author(s):  
I. Rodriguez ◽  
J. Krohn ◽  
J.O. Backhaus

We intend to present a brief description of the fundamen tals of a barotropic version of the 3D numerical model of the Institut fiir Meereskunde-Hamburg altogether with some results concerning the application of the model to the simulation of tidal currents in the Spanish atlantlc waters.


2014 ◽  
Vol 1020 ◽  
pp. 204-209 ◽  
Author(s):  
Jana Labudková ◽  
Radim Čajka

In the context with the solution of interaction of foundation structures and subsoil is complexity of a static solution given mainly by selection of a computational model, effects of physical-nonlinear behaviour of such structure and co-effects of the upper structure and the foundation structure. The purpose of this paper is to compare subsidence of the foundation measured during the experiment and numerical calculations based on FEM. This paper describes how calculated deformations depend on parameters of subsoil modelled by 3D finite elements. The parametric study includes charts of the dependence of resulting deformation on the choice of boundary conditions, on the size of the modeled area represents the subsoil, on the depth of 3D subsoil model and the size of the ground area 3D subsoil model.


2011 ◽  
Vol 291-294 ◽  
pp. 2111-2114
Author(s):  
Yong Jin ◽  
Fang Lan

With the popularity of the water lubricated rubber stern bearing, researches around rubber bearings are becoming more and more popular in recent years. This paper built a 3D numerical model of water-lubricated rubber stern bearing and did both free boundary and constraint modal analysis using finite element software ANSYS. The results show that free modes of water-lubricated rubber stern bearing are correlating with the constraint modes. The natural frequency distributes intensely in low frequency and the modal shapes mainly focus in the inner lining. Along with mode order increased, the mode shapes become more complicated. The mode shapes mainly embodies in the inner lining.


2014 ◽  
Vol 4 (4) ◽  
pp. 26-33
Author(s):  
P.Deepak Kumar ◽  
◽  
Ishan Sharma ◽  
P.R. Maiti ◽  
◽  
...  

Sign in / Sign up

Export Citation Format

Share Document