Particulate Composites with Wastes from Treated Wood and Tire Rubber

2014 ◽  
Vol 1025-1026 ◽  
pp. 288-291 ◽  
Author(s):  
Marília da Silva Bertolini ◽  
André Luis Christoforo ◽  
Carlito Calil Neto ◽  
Francisco Antonio Rocco Lahr

The segment of wood preservation is responsible for considerable waste generation, typically consisting of products not approved by quality control or post-consumer. Another type of waste to be considered is tire rubber, which accumulate due to deficiencies in logistics and fiscalization. Although it has been classified as intractable, tire rubber enables to add properties in products that promote the use of materials in particulate form. This study aimed producing and characterization of particulate composites containing CCB-treated Pinus sp. with addition of tire rubber, and castor oil-based polyurethane resin. Properties of particleboards were obtained according to Brazilian Code NBR 14810:2006. The results were compared by statistical analysis. It was observed that addition of tire rubber waste resulted in higher densities, and rubber proportion of 50% showed greater internal bond. In some cases, strength in bending of panels was in accordance with standards requirements and commercial products destined for acoustic conditioning, enabling different applications.

2015 ◽  
Vol 1088 ◽  
pp. 656-659
Author(s):  
Ivaldo D. Valarelli ◽  
Rosane A.G. Battistelle ◽  
Barbara Stolte Bezerra ◽  
Luiz A. Melgaço N. Branco ◽  
Eduardo Chahud ◽  
...  

In recent years the production of products derived from wood and bamboo are increasing, due to the search for a more rational exploitation of these raw materials. Amongst these products, the particleboards production combine sustainability and rationality in the use of these materials. In this context, this work has the objective to study the application of alternative raw materials in the manufacture of Medium Density Particleboards (MDP), using residues from industrial processimg of coffee and bamboo. MDP had been produced with particles of giganteus bamboo of the Dendrocalamus species and particle of coffee rind in the intermediate layer of the particleboard, bonded with polyurethane resin based on castor oil. The physical and mechanical characterization was carried out accordingly to NBR 14810-3 (2006). The physical properties evaluated were: of water absorption for 2h and 24h; thickness swallowing for 2h and 24h; density, humidity content. The mechanical properties evaluated were: Tensile strength, static bending (MOR and MOE). The results were compared with NBR 14810-2 (2006) and also with the ANSI A208-1 (1993). The physical performance of these particleboards was below the values recommend by the Brazilian norm. Also the mechanical characteristics are not improve, demonstrating that the inclusion of coffee rind did not benefit the physical characteristics and nor the mechanical ones. However it can be used as construction materials for partitions and ceiling panels.


2004 ◽  
Vol 7 (3) ◽  
pp. 421-425 ◽  
Author(s):  
Cristiane Inácio de Campos ◽  
Francisco Antonio Rocco Lahr

2015 ◽  
Vol 668 ◽  
pp. 263-269 ◽  
Author(s):  
Marilia da Silva Bertolini ◽  
André Luis Christoforo ◽  
Francisco Antonio Rocco Lahr

The concept of sustainable buildings addresses the environmentally efficiency, with respect to energy consumption, by adopting products that offer thermal insulation. Moreover, use of wastes from different materials also contributes to obtain products for this application. The volume of wastes from timber industry and those from tires are an environmental problem. This study aimed to production and characterization of particleboards using wastes from wood and tire rubber with castor-oil polyurethane resin. Panels were produced containing only wood and also with addition of tire rubber. The properties determined were density, modulus of rupture (MOR) and modulus of elasticity (MOE) in bending, according to Brazilian Code NBR 14810-3 (2006), and thermal conductivity. Statistical analysis was conducted in physical and mechanical properties. Panels containing wood were classified as low density (0.55 g/cm³), while those with wood and tire rubber resulted in medium density (0.78 g/cm³). For mechanical properties, the addition of rubber resulted in increased of MOR and reduction for MOE. Superior performance for thermal conductivity was achieved for panels produced only with wood. However, samples with a mixture of wood and tire rubber also showed consistent thermal conductivity with similar products. Considering the results obtained, panels containing wood and tire rubber addition have potential for application as thermal insulation.


Holzforschung ◽  
2000 ◽  
Vol 54 (2) ◽  
pp. 119-122 ◽  
Author(s):  
Jun Zhang ◽  
D. Pascal Kamdem

Summary The interaction of copper ethanolamine (Cu-EA) preservative and wood components was studied by using Fourier transform infrared spectroscopy (FTIR). In Cu-EA treated wood, significant reduction was noticed on the band attributed to carbonyl vibration from carboxylic groups at 1735 ± 5 cm−1 and an increase in band intensity was obtained from carbonyl in carboxylate at 1595 ± 5 cm−1. The same observation was made in Cu-EA treated holocellulose. Cu-EA treated lignin resulted in a reduction in the aromatic ester band at 1710 ± 5 cm−1 and an increase in carbonyl from carboxylate at 1595 ± 5 cm−1. Bands at 1370 cm−1 and 1221 cm−1, assigned to phenolic hydroxyl groups, exhibited a decrease in intensity after the treatment. From these data, it is concluded that Cu-EA interacts with carboxylic groups, phenolic hydroxyl groups and ester groups from lignin to form copper carboxylate and phenolate complexes.


2019 ◽  
Vol 7 (1) ◽  
pp. 31-40 ◽  
Author(s):  
Azam Sardari ◽  
Ali Asghar Sabbagh Alvani ◽  
Seyed Reza Ghaffarian

Holzforschung ◽  
2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Kévin Candelier ◽  
Janka Dibdiakova

AbstractThis review compiles various literature studies on the environmental impacts associated with the processes of thermal modification of wood. In wood preservation field, the wood modification by heat is considered as an ecofriendly process due to the absence of any additional chemicals. However, it is challenging to find proper scientific and industrial data that support this aspect. There are still very few complete studies on the life cycle assessment (LCA) and even less studies on the environmental impacts related to wood heat treatment processes whether on a laboratory or on an industrial scales. This comprehensive review on environmental impact assessment emphasizes environmental categories such as dwindling of natural resources, cumulative energy intake, gaseous, solid and liquid emissions occurred by the thermal-treated wood industry. All literature-based data were collected for every single step of the process of wood thermal modification like resources, treatment process, transport and distribution, uses and end of life of treated wood products.


2016 ◽  
Vol 46 (12) ◽  
pp. 1237-1243 ◽  
Author(s):  
Karun K. Rao ◽  
Molly Ferguson ◽  
Kyle Murphy ◽  
Jean Zhao ◽  
Daniel Lacks ◽  
...  

Cerâmica ◽  
2017 ◽  
Vol 63 (368) ◽  
pp. 530-535
Author(s):  
Z. L. M. Sampaio ◽  
A. E. Martinelli ◽  
T. S. Gomes

Abstract The recent increase in the construction industry has transformed concrete into an ideal choice to recycle a number of residues formerly discarded into the environment. Among various products, porcelain tile polishing, limestone and tire rubber residues are potential candidates to replace the fine aggregate of conventional mixtures. The aim of this study was to investigate the effect of the addition of varying contents of these residues in lightweight concrete where expanded clay replaced gravel. To that end, slump, compressive strength, density, void ratio, porosity and absorption tests were carried out. The densities of all concrete formulations studied were 10% lower to that of lightweight concrete (<1.850 kg/m³). Nevertheless, mixes containing 10 to 15% of combined residues reduced absorption, void ratio and porosity, at least 17% lower compared to conventional concrete. The strength of such formulations reached 27 MPa at 28 days with consistency of 9 to 12 cm, indicating adequate consistency and increased strength. In addition, the combination of low porosity, absorption and voids suggested improved durability.


Sign in / Sign up

Export Citation Format

Share Document