The Pressure Field Radiated by Cavitation Bubble in the Grinding Area of Power Ultrasonic Honing

2014 ◽  
Vol 1027 ◽  
pp. 44-47 ◽  
Author(s):  
Xi Jing Zhu ◽  
Ce Guo ◽  
Jian Qing Wang

The pressure field induced by cavitaion bubble is responsible for the grinding mechanism and the cutting chatter of power ultrasonic honing. Based on the cavitation bubble dynamics model in the grinding area of power ultrasonic honing, the radiation pressure field of cavitation bubble was established. Experimental results show that the bubble is distributed in the grinding area like honeycomb and the size is about 10μm. Numerical simulation of dynamics and pressure field of cavitation bubble was performed. Numerical results show the dynamic behavior of cavitation bubble presents grow, expend and collapse under an acoustic cycle. However the expansion amplitude of bubble can be decreased and the collapse time can be extended and even collapse after several acoustic cycles with increasing ambient bubble radius. The bubble radiation pressure during collapsing bubble increases with increasing ultrasonic amplitude and ultrasonic frequency. And the pressure value of collapsing bubble is about 10Mpa which is more an order of magnitude than atmospheric pressure.

2013 ◽  
Vol 797 ◽  
pp. 108-111 ◽  
Author(s):  
Xi Jing Zhu ◽  
Ce Guo ◽  
Jian Qing Wang ◽  
Guo Dong Liu

t can particularly generate abundant cavitation bubbles in the processing of the power ultrasonic honing. The dynamics of cavitation bubbles in the grinding area are very vital to study the machining mechanism and the cutting chatter of power ultrasonic honing. Based on the Rayleigh-Plesset equation, a new dynamics model of cavitation bubble is established, considering the velocity of ultrasonic honing and honing pressure. With the superposition principle of velocity potential, the dynamics of double cavitation bubble is also established. Moreover, the dynamic characteristics of cavitation bubble also can be simulated numerically. The results show that cavitation bubble in the grinding zone begins to grow extensively and then undergoes collapse, and even subsequent rebound and then. The variation trend of radius change of double cavitation bubble in the grinding area is more than that of single cavitation bubble by an order of magnitude.


2013 ◽  
Vol 2013 ◽  
pp. 1-14 ◽  
Author(s):  
Sankar Chakma ◽  
Vijayanand S. Moholkar

This paper presents the effects of various parameters that significantly affect the cavitation. In this study, three types of liquid mediums with different physicochemical properties were considered as the cavitation medium. The effects of various operating parameters such as temperature, pressure, initial bubble radius, dissolved gas content and so forth, were investigated in detail. The simulation results of cavitation bubble dynamics model showed a very interesting link among these parameters for production of oxidizing species. The formation of •OH radical and H2O2 is considered as the results of main effects of sonochemical process. Simulation results of radial motion of cavitation bubble dynamics revealed that bubble with small initial radius gives higher sonochemical effects. This is due to the bubble with small radius can undergo many acoustic cycles before reaching its critical radius when it collapses and produces higher temperature and pressure inside the bubble. On the other hand, due to the low surface tension and high vapor pressure, organic solvents are not suitable for sonochemical reactions.


Author(s):  
J. R. Blake

AbstractThe Kelvin impulse is a particularly valuable dynamical concept in unsteady fluid mechanics, with Benjamin and Ellis [2] appearing to be the first to have realised its value in cavitation bubble dynamics. The Kelvin impulse corresponds to the apparent inertia of the cavitation bubble and, like the linear momentum of a projectile, may be used to determine aspect It is defined aswhere ρ is the fluid density, ø is the velocity potential, S is the surface of the cavitation bubble and n is the outward normal to the fluid. Contributions to the Kelvin impulse may come from the presence of nearby boundaries and the ambient velocity and pressure field. With this number of mechanisms contributing to its development, the Kelvin impulse may change sign during the lifetime of the bubble. After collapse of the bubble, it needs to be conserved, usually in the form of a ring vortex. The Kelvin impulse is likely to provide valuable indicators as to the physical properties required of boundaries in order to reduce or eliminate cavitation damage. Comparisons are made against available experimental evidence.


2014 ◽  
Vol 568-570 ◽  
pp. 1794-1800
Author(s):  
Xiu Mei Liu ◽  
Bei Bei Li ◽  
Wen Hua Li ◽  
Jie He ◽  
Jian Lu ◽  
...  

Cavitation is a common harmful phenomenon in hydraulic transmission systems. It not only damages flow continuity and reduces medium physical performance, but also induces vibration and noise. At the same time, the efficiency of a system is reduced due to cavitation, especially dynamic performance are deteriorated. Applying commercial CFD software FLUENT, the cavitation issuing from the orifice was numerically investigated, reducing the harm. The effect of liquid parameters (such as surface tension, gas content, and the temperature) on the oscillation of bubble is studied numerically. The modified Rayleigh-Plesset equations are presented to describe the oscillation of bubble in different liquids. Employing the finite difference calculus, the behavior of a cavitation bubble in liquids with different physics parameters are obtained. Meanwhile, the numerical results are compared with experiment results. It is observed that the viscous force decreases the growth and collapse of a bubble, making it expand or collapse less violently. And the surface-tension forces stave bubble growth progress and speed up bubble collapse process. On the other hand, both the maximum bubble radius and bubble lifetime increase with increasing temperature. These results can provide theory basis for understanding cavitation bubble dynamics in the hydraulic systems.


2018 ◽  
Vol 140 (4) ◽  
Author(s):  
Ce Guo ◽  
XiJing Zhu ◽  
Jia Liu ◽  
Dan Zhang

During ultrasonic vibration honing (UVH), a thin hydrodynamic oil film formed can seriously affect the cavitation effect in the grinding fluid, but the mechanism is still unclear now. Based on the hydrodynamics theory, a revised cavitation bubble model with oil film pressure is developed, and it has been calculated by the four-order Runge–Kutta method. The calculation results show that the oil film pressure under UVH is a positive–negative alternant pulse pressure, and it can induce the secondary expansion of the bubble, leading to double microjets during the process of the bubble collapsing. The effects of ultrasonic amplitude, ultrasonic frequency, oil film height, and reciprocation speed of the honing stone on the bubble dynamics are discussed. With the increase of ultrasonic amplitude, the amplitude of the bubble expansion is increased, and the oscillation interval is extended. As increasing normalized oil film height, the variation of the bubble first expansion is slight, while the amplitude of the bubble secondary expansion is reduced and the oscillation interval is also shortened. The main effect of ultrasonic frequency and reciprocation speed of the honing stone on the bubble dynamics is connected with the secondary bubble expansion. The bubble secondary expansion is decreased with the increasing reciprocation speed of the honing stone, ultrasonic frequency, and oil film height. The results of the simulations are consistent with the surface roughness measurements well, which provides a theoretical prediction method of cavitation bubbles control.


2009 ◽  
Vol 131 (3) ◽  
Author(s):  
Si Huang ◽  
A. A. Mohamad

Investigation on cavitation in multicomponent (solid-liquid and liquid-liquid) mixtures has many applications in the industries and engineering. In this paper, for simulation of multicomponent mixtures, a set of equations with first-order bubble-wall Mach number is derived for a single spherical bubble in quasihomogeneous mixtures. Cavitation bubble behaviors in several kinds of liquid-liquid and solid-liquid mixtures are numerically calculated based on the current model, including the temporal variations in the bubble radius, pressure, and temperature inside the bubble. Specifically, the analysis is focused on the impact of pressure and temperature, while the bubble collapses in the mixtures. The computed results are compared with the previously reported experimental ones to demonstrate the validity of the current model and the numerical procedures.


Author(s):  
Ehsan Samiei ◽  
Mehrzad Shams ◽  
Reza Ebrahimi

A numerical code to simulate mass transfer effects on spherical cavitation bubble collapse in an acoustic pressure domain in quiescent water has been developed. Gilmore equation is used to simulate bubble dynamics, with considering mass diffusion and heat transfer. Bubbles with different initial radii were considered in quiescent infinite water in interaction with sinusoidal shock waves with different magnitudes of amplitude and frequency. Simulations were done in two cases; with and without considering mass transfer. Good agreement with reference data was achieved. For bubbles with small radii in high frequency pressure field with low amplitude, mass transfer causes larger maximum radii and growth time, and more violent resultant collapse. Decreasing pressure frequency or increasing its amplitude causes larger maximum radii, longer collapse time, and more violent collapse. But, in cases with mass transfer because at the last moments of collapse stage a large amount of water vapor is trapped inside the bubble, the collapse will become less violent. For larger bubbles collapse becomes more violent for the cases without mass transfer in all pressure amplitudes and higher frequencies. But decreasing pressure frequency makes the collapse of the bubbles with mass transfer more violent. However, mass transfer effects decreases with increasing initial bubble radius.


2007 ◽  
Vol 575 ◽  
pp. 1-26 ◽  
Author(s):  
JAEHYUG CHOI ◽  
STEVEN L. CECCIO

The growth and collapse of a cavitation bubble forming within the core of a line vortex was examined experimentally to determine how the dynamics and noise emission of the elongated cavitation bubble is influenced by the underlying non-cavitating vortex properties. A steady line vortex was formed downstream of a hydrofoil mounted in the test section of a recirculating water channel. A focused pulse of laser light was used to initiate a nucleus in the core of a vortex, allowing for the detailed examination of the growth, splitting and collapse of individual cavitation bubbles as they experience a reduction and recovery of the local static pressure. Images of single-bubble dynamics were captured with two pulse-synchronized high-speed video cameras. The shape and dynamics of single vortex cavitation bubbles are compared to the original vortex properties and the local static pressure in the vortex core, and an analysis was performed to understand the relationship between the non-cavitating vortex properties and the diameter of the elongated cavitation bubble. Acoustic emissions from the bubbles were detected during growing, splitting and collapse, revealing that the acoustic impulse created during collapse was four orders of magnitude higher than the noise emission due to growth and splitting. The dynamics and noise generation of the elongated bubbles are compared to that of spherical cavitation bubbles in quiescent flow. These data indicate that the core size and circulation are insufficient to scale the developed vortex cavitation. The non-cavitating vortex circulation and core size are not sufficient to scale the bubble dynamics, even though the single-phase pressure field is uniquely scaled by these parameters. A simple analytical model of the equilibrium state of the elongated cavitation bubble suggests that there are multiple possible equilibrium values of the elongated bubble radius, each with varying tangential velocities at the bubble interface. Thus, the details of the bubble dynamics and bubble–flow interactions will set the final bubble dimensions.


2021 ◽  
Vol 33 (2) ◽  
pp. 023302
Author(s):  
Wei Liu ◽  
Ning Li ◽  
Chun-sheng Weng ◽  
Xiao-long Huang ◽  
Yang Kang

2021 ◽  
Vol 62 (5) ◽  
Author(s):  
Javad Eshraghi ◽  
Arezoo M. Ardekani ◽  
Pavlos P. Vlachos

Sign in / Sign up

Export Citation Format

Share Document