Research on Collaborative Design System of Green Building Information Model

2014 ◽  
Vol 1042 ◽  
pp. 272-276 ◽  
Author(s):  
Xue Song Luo ◽  
Min Xu ◽  
Chun Gan

In order to solve the problems existing in the traditional architectural design process, so as to realize the green building model of task coordination, this article through the analysis of the architectural design work in the process of information flow characteristics, based on green building information model of collaborative design decision-making system, to supervise and control the information flow process. IDEF0s method is applied to traffic simulation model was set up at the same time, in order to realize the green building effective connection each process, various professional and task coordination, maximize the efficiency of the total project life cycle, the purpose of improving the efficiency of resource utilization.

2011 ◽  
Vol 368-373 ◽  
pp. 3797-3800
Author(s):  
Xu Dong Zeng ◽  
Wei Qiang Zhou

Construction project life-cycle management should be based on the visualization of a virtual building, through the establishment of a Building Information Model in the phase of architectural design as a life-cycle information carrier to realize complete information integration. This enables all phases and territories of the whole building life-cycle to achieve in-time information-sharing so as to overcome traditional territory management pattern. This also improves the running mode and information management during the phases of design, costing, construction and operation.


2021 ◽  
Vol 248 ◽  
pp. 03058
Author(s):  
Rulun Peng ◽  
Tianyi Liu ◽  
Min Zhang

With the rapid development of the socialist market economy, the development of the construction industry and the information industry has become more mature and sound. However, the practical application of information technology in the existing construction industry still faces corresponding problems, lacking sufficient completeness and specificity. This article will specifically discuss and analyze the building structure integrated collaborative design program of building information model, in order to provide a foundation for the development of modern construction industry.


2021 ◽  
Vol 2066 (1) ◽  
pp. 012072
Author(s):  
Dong Wang

Abstract As a revolutionary technology to realize the construction industry information, BIM technology has been vigorously developed in China in recent years. The whole life cycle of a construction project includes planning stage, design stage, construction stage, operation and maintenance stage, with many participating units. This paper mainly studies the architectural design of building information model technology under the Internet era. This paper analyzes and combs the traditional structural design process, and summarizes the problems and defects existing in the traditional structural design process. Combined with the characteristics of BIM technology application, the BIM technology is combined with the traditional structural design process. Taking Project A as an example, the causality analysis, the analytic hierarchy process and the fuzzy comprehensive evaluation method are used. The architectural design quality of Project a based on BIM technology is evaluated, and the effect of adopting BIM technology in the design of Project A is compared and analyzed.


Buildings ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 59
Author(s):  
Abraham Yezioro ◽  
Isaac Guedi Capeluto

Improving the energy efficiency of existing and new buildings is an important step towards achieving more sustainable environments. There are various methods for grading buildings that are required according to regulations in different places for green building certification. However, in new buildings, these rating systems are usually implemented at late design stages due to their complexity and lack of integration in the architectural design process, thus limiting the available options for improving their performance. In this paper, the model ENERGYui used for design and rating buildings in Israel is presented. One of its main advantages is that it can be used at any design stage, including the early ones. It requires information that is available at each stage only, as the additional necessary information is supplemented by the model. In this way, architects can design buildings in a way where they are aware of each design decision and its impact on their energy performance, while testing different design directions. ENERGYui rates the energy performance of each basic unit, as well as the entire building. The use of the model is demonstrated in two different scenarios: an office building in which basic architectural features such as form and orientation are tested from the very beginning, and a residential building in which the intervention focuses on its envelope, highlighting the possibilities of improving their design during the whole design process.


2021 ◽  
pp. 56-60
Author(s):  
Alexander P. Konstantinov

The paper presents a method for assessing the daylighting of premises, which can be used directly at the stage of architectural and construction design of buildings in building information model (BIM) software complexes. The calculation method is based on the calculation of the sky factor by constructing a solid angle formed by the calculated point and the light opening of the outer wall. These operations are proposed to be performed automatically using visual programming programs that work together with the BIM complexes. Since the considered calculation method is based on the idea of the physical meaning of the daylight factor, it can be used to evaluate the daylighting according to almost any regulatory method. At the same time, all the data necessary for the calculation can be obtained directly from the building information model. The method is universal and can be used both for the calculation of side and top daylighting, considering the surrounding development. The proposed method can also be used as a tool for finding the best design solution for translucent structures of the designed building based on the requirements of thermal protection, daylighting, and safety.


Sign in / Sign up

Export Citation Format

Share Document