Simulation Analysis of Temperature Field of Permanent Magnet Governor

2014 ◽  
Vol 1044-1045 ◽  
pp. 422-425 ◽  
Author(s):  
Yan Jie Wang ◽  
San Ping Zhou

In the operation process of permanent magnet governor, the temperature rises due to eddy current loss, and demagnetization of permanent magnet occurs at high temperature. The numerical simulation of fluid flow field and temperature field was carried out with the method of computational fluid dynamics (CFD) and ANSYS-Fluent software. And then we improved the structure of permanent magnet governor on the basis of analysis of the flow field and temperature distribution. The result indicates that the flow of improved structure increases, and temperature drops 46.°C, fulfilling the desired temperature range of permanent magnet can bear, which provides a theory basis for the design of ventilation-cooling structure of permanent magnet governor.

2014 ◽  
Vol 554 ◽  
pp. 381-385
Author(s):  
Azmahani Sadikin ◽  
Md Iskandar Md Noor ◽  
Norasikin Mat Isa ◽  
Siti Mariam Basharie ◽  
Amir Khalid

This paper presented simulation analysis of stress distribution along a mixing blades propeller used in biodiesel reactor tank. The mixing blade types used are: (1) three bladed mixing propeller, (2) pitch turbine blade and (3) Rushton blade. ANSYS FLUENT software was used to run the simulation. The maximum stress occurs when using three bladed mixing propellers type. The minimum stress occurs when using the Rushton blade. Therefore, the Rushton blade is the best blade used for biodiesel reactor. Stress concentration is observed at the fillet for all blade types. The selection of the right type mixing blade can improve the biodiesel production and lower the maintenance cost. The result obtained from the simulation is agreed well with the published data.


Author(s):  
D. Dupleac

The paper overviews the analytical studies performed at Politehnica University of Bucharest on the analysis of late phase severe accident phenomena in a Canada Deuterium Uranium (CANDU) plant. The calculations start from a dry debris bed at the bottom of calandria vessel. Both SCDAPSIM/RELAP code and ansys-fluent computational fluid dynamics (CFD) code are used. Parametric studies are performed in order to quantify the effect of several identified sources of uncertainty on calandria vessel failure: metallic fraction of zirconium inside the debris, containment pressure, timing of water depletion inside calandria vessel, steam circulation in calandria vessel above debris bed, debris temperature at moment of water depletion inside calandria vessel, calandria vault nodalization, and the gap heat transfer coefficient.


2013 ◽  
Vol 368-370 ◽  
pp. 619-623
Author(s):  
Zhen Liu ◽  
Xiao Ling Wang ◽  
Ai Li Zhang

For the purpose of avoiding the deficiency of the traditional construction ventilation, the ventilation of the underground main powerhouse is simulated by the computational fluid dynamics (CFD) to optimize ventilation parameters. A 3D unsteady RNG k-ε model is performed for construction ventilation in the underground main powerhouse. The air-flow field and CO diffusion in the main powerhouse are simulated and analyzed. The two construction ventilation schemes are modelled for the main powerhouse. The optimized ventilation scheme is obtained by comparing the air volume and pressure distributions of the different ventilation schemes.


2017 ◽  
Vol 77 (3) ◽  
pp. 647-654 ◽  
Author(s):  
Haoming Yang ◽  
David Z. Zhu ◽  
Yanchen Liu

Abstract Determining the proper installation location of flow meters is important for accurate measurement of discharge in sewer systems. In this study, flow field and flow regimes in two types of manholes under surcharged flow were investigated using a commercial computational fluid dynamics (CFD) code. The error in measuring the flow discharge using a Doppler flow meter (based on the velocity in a Doppler beam) was then estimated. The values of the corrective coefficient were obtained for the Doppler flow meter at different locations under various conditions. Suggestions for selecting installation positions are provided.


2011 ◽  
Vol 291-294 ◽  
pp. 423-427
Author(s):  
Yan Juan Jin ◽  
Xiao Chao Cui ◽  
Zhu Zhang

An inner-outer coupled cooling technology of molten steel for 1240×200mm slab continuous casting, that is to set an inner cooler—U shape pipes in the mold, is put forward in order to enhance the efficiency of transmitting heat and improve inner structure of billet. The flow status and solidification status of molten steel under coupling flow field and temperature field in inner-outer coupled cooling mold are simulated by using fluid dynamics software, and compare with those in traditional mold. It is found that setting inner cooler in the mold can make molten steel flow status even, which is favorable to floating up of the inclusion, quickening the solidification of steel liquid and improving the quality of billet.


Author(s):  
Hasham H. Chougule ◽  
Alexander Mirzamoghadam

The objective of this study is to develop a Computational Fluid Dynamics (CFD) based methodology for analyzing and predicting leakage of worn or rub-intended labyrinth seals during operation. The simulations include intended tooth axial offset and numerical modeling of the flow field. The purpose is to predict total leakage through the seal when an axial tooth offset is provided after the intended/unintended rub. Results indicate that as expected, the leakage for the in-line worn land case (i.e. tooth under rub) is higher compared to unworn. Furthermore, the intended rotor/teeth forward axial offset/shift with respect to the rubbed land reduces the seal leakage. The overall leakage of a rubbed seal with axial tooth offset is observed to be considerably reduced, and it can become even less than a small clearance seal designed not to rub. The reduced leakage during steady state is due to a targeted smaller running gap because of tooth offset under the intended/worn land groove shape, higher blockages, higher turbulence and flow deflection as compared to worn seal model without axial tooth offset.


2018 ◽  
Vol 35 (9) ◽  
pp. 098101
Author(s):  
Shu-Zhe Mei ◽  
Quan Wang ◽  
Mei-Lan Hao ◽  
Jian-Kai Xu ◽  
Hong-Ling Xiao ◽  
...  

Author(s):  
V. A. Karkoulias ◽  
P. E. Marazioti ◽  
D. P. Georgiou ◽  
E. A. Maraziotis

This paper investigates how the structure of the flow field and the vertical distribution of the pollutant concentration near the wall facades of street canyons are affected by the presence of some elements such as street level galleries. Numerical results are presented for various gallery geometries in combination with facade roughness elements (balconies) for a canyon of an aspect ratio equal to h/w=2.33. The results were obtained by a Computational Fluid Dynamics (CFD) simulation employing the ANSYS-FLUENT suite that incorporated the k-e turbulent (RNG) model. The simulation generated several flow structures inside the canyon (mainly vortices), whose characteristic properties (e.g. number, strength and size) are discussed in terms of the effect of the galleries on the flow field structure and the roughness generated by the building façade balconies. The results indicate a significant influence on both the flow field structure and the mass concentration distribution of the polluting particles.


2015 ◽  
Author(s):  
Brent S. Paul

The successful integration of aviation capabilities aboard ships is a complex endeavor that must balance ship design with the flight envelope of the helicopter. This can be particularly important when considering air wakes and other flow around the superstructure as it impacts the flight deck. This flow can generate unsteady structures that may interfere with safe helicopter operations. Computational fluid dynamics (CFD) is commonly used to characterize the flow field and assess potential impacts to the flight envelope, which can be used to help define an operating envelope for helicopter operations.


Sign in / Sign up

Export Citation Format

Share Document