Use of Nuclear Energy and Sustainable Development

2014 ◽  
Vol 1070-1072 ◽  
pp. 353-356
Author(s):  
Fang Chen ◽  
Qiang Yao

Nuclear energy as a clean energy, with the gradual depletion of traditional energy, is particularly important. In this paper, the status of the application of nuclear technology was reviewed. And problems during the use of nuclear energy were addressed, including environmental issue generated by radioactive mineral extraction, radwaste disposal, nuclear power plant safety operation. Although, there are still some problems in the process of nuclear energy use, undeniably nuclear energy is still the hope for the future of human society. Therefore, the technical and management improvement can achieve sustainable development of nuclear energy, in order to ensure the safety of human energy use and sustainability.

Author(s):  
Zhiwei Zhou ◽  
Hong Xu ◽  
Yongwei Yang

Two aspects of the development trend of current nuclear fission technology are discussed. The first aspect is to improve economic competitiveness and safety for searching opportunity of enlarging the share of nuclear power. The second aspect is to explore new ways of improving the efficiency of nuclear fuel utilization and of reducing the geological repository volume of radioactive products from nuclear power generation. Sustainable development of Chinese economy in 21st century will mainly rely on sustainable supply of clean energy with indigenous natural resources. The burden of current coal-dominant energy mix and the environmental pollution due to energy consumptions has led nuclear power to be an indispensable choice for further expanding electricity generation capacity and for reducing greenhouse effect gases emission in China. The long-term sustainable development strategy with nuclear fission technology beyond generation-IV for electric power generation, namely the fusion-fission hybrid subcritical reactor technology, is discussed. The impact of the proposed fission-fusion hybrid reactor to future nuclear power generation technology will reply on the success of the ITER-scale (500MW fusion power) Tokamak to burn plasma continuously in the predictable future. The main challenges and prospects of the strategy are also analyzed. The preliminary analysis has shown that the fission in the subcritical blanket driven by fusion neutrons can effectively amplify the energy carried by fusion neutron and maintain breeding of fissile material and tritium. It has been found from the results of a conceptual design that this new type of fusion-fission hybrid reactor may meet the requirement of China’s long-term sustainable development of nuclear energy.


2017 ◽  
Vol 32 (1) ◽  
pp. 109-114
Author(s):  
Ming-Kuan Tsai

Nuclear incidents and accidents have occurred at various nuclear power plants. Since some of these incidents and accidents caused by human errors might be preventable, numerous researchers argue that fatigue management for on-site workers is the key, especially for mental fatigue. Thus, this study proposes an approach consisting of two mechanisms. A fatigue monitor could identify the mentally fatigued workers by detecting their brain wave rhythms through a brain-computer interface. For such workers, a fatigue alert would awaken them. If the status of the mentally fatigued workers becomes worse, based on a positioning technique (i.e., wireless networks), this mechanism would alert the nearby workers and managers to deal with this condition. The test results indicate that the proposed approach enhanced the capacity to examine the mentally fatigued workers, ensured the accuracy in locating these workers, and avoided possible nuclear incidents. This study is a useful reference for similar applications in the nuclear industry.


Author(s):  
Nor Eddine Laghzale ◽  
Abdel-Hakim Bouzid

Steam generators are the subject of major concern in nuclear power plant safety. Within these generators, in addition to the structural integrity, the gross tightness barrier, which separates the primary and secondary circuits, is primarily ensured by the presence of a residual contact pressure at the tube-to-tubesheet joint interface. Any leakage is unacceptable, and its consequences are very heavy in terms of the human and environmental safety as well as maintenance cost. Some studies have been conducted to understand the main reasons for such a failure. However, no analytical model able to predict the attenuation of the residual contact pressure under the effect of material creep relaxation behavior. The development of a simple analytical model able to predict the change of the residual contact pressure as a function of time is laid out in this paper. The results from the analytical model are checked and compared with those of finite elements.


Author(s):  
Ifeoluwa Garba ◽  
Richard Bellingham

Access to energy is crucial in tackling many of the current global development challenges that impact on people’s economic, health and social well-being as well as the ability to meet the commitments of reducing carbon emissions through clean energy use. Despite increased attention from multiple governments and agencies, energy poverty remains a serious sustainable development issue in many developing countries. To date, most research have focused on general access to electricity and the generation of clean energy to replace fossil fuels, failing to address the lack of basic access to clean energy for cooking and heating. More people in the world lack access to clean cooking fuels than to electricity. This issue is one aspect of a broader research which investigates the impacts of optimized energy policy and energy business models on sustainable development in developing countries.


Author(s):  
Paul J. Amico ◽  
Pierre Macheret ◽  
Robert P. Kassawara

It has been traditional in assessment of nuclear power plant safety that both deterministic safety analyses and probabilistic safety analyses treat the potential effects of various hazards individually. That is, the safety implications of internal events (e.g., randomly occurring transients and LOCAs), internal hazards (e.g., internal fire and flood), and external hazards (e.g., earthquakes, tornados) are treated as independent occurrences. With the occurrence of the Great Tohoku earthquake and the effects observed at nuclear plants in Japan, it was realized that this approach failed to provide a realistic representation of risk, and now there is a significant interest in correlated hazards. As a result, EPRI embarked on the development of an improved methodology focusing on seismically-induced internal fires and internal floods. All the technical work on the methodology has been completed and draft technical guidance developed. This guidance has been provided to some plants that are interested in piloting the methodology. As of the date of paper submittal, two pilots are underway and three more are under consideration. Upon completion of the pilots, the methodology will be updated to incorporate the lessons-learned and published.


1981 ◽  
Vol 25 (1) ◽  
pp. 110-114 ◽  
Author(s):  
David D. Woods ◽  
John A. Wise ◽  
Lewis F. Hanes

Two proposed safety parameter display systems, of the type to be required in nuclear power plant control rooms, were evaluated using a training simulator and experienced crews undergoing refresher training. A decision analysis approach was used. The discussion addresses the effectiveness of the training situation as an evaluation tool and methodological issues.


Sign in / Sign up

Export Citation Format

Share Document