Use of 99mTc-HMPAO in Evaluating Cerebrovascular Events in the Patients with Metabolic Syndrome: Relationship to Cognitive Function

2015 ◽  
Vol 1084 ◽  
pp. 501-505
Author(s):  
Nataliya Yu. Efimova ◽  
Vladimir I. Chernov ◽  
Irina Yu. Efimova ◽  
Yuriy B. Lishmanov

The purpose of this study is to investigate the potential of brain tomoscintigraphy with 99mTc-HMPAO in the evaluation of cerebral blood flow in the patients with metabolic syndrome (MS), as well as the study of the relationship of brain perfusion and cognitive function. The study included 54 patients with MS who have undergone perfusion single-photon emission tomography (SPECT) of the brain and neuropsychological testing before and after antihypertensive therapy. Thus, brain SPECT with 99mTc-HMPAO in the patients with MS provides an opportunity to diagnose diffuse disorders of cerebral circulation in the different regions of the brain, leading to cognitive dysfunction in these patients. Close relationship between the parameters of cerebral perfusion and cognitive performance status of the patients was identified.

1997 ◽  
Vol 170 (5) ◽  
pp. 426-430 ◽  
Author(s):  
Guy M. Goodwin ◽  
Jonathan T. O. Cavanagh ◽  
M. F. Glabus ◽  
R. F. Kehoe ◽  
R. E. O'Carroll ◽  
...  

BackgroundEarly manic relapse following lithium discontinuation offers an important opportunity to investigate the relationship between symptoms, effects of treatment and regional brain activation in bipolar affective disorder.MethodFourteen stable bipolar patients on lithium were examined with neuropsychological measures, clinical ratings and single photon emission computed tomography (SPECT) before and after acute double-blind withdrawal of lithium. Brain perfusion maps were spatially transformed into standard stereotactic space and compared pixel-by-pixel. A parametric analysis was used to examine the change in brain perfusion on lithium withdrawal, and the relationship between symptom severity and brain perfusion separately both between and within subjects.ResultsLithium withdrawal was associated with an important redistribution of brain perfusion, with increases in inferior posterior regions and decreases in limbic areas, particularly anterior cingulate cortex. Seven of the 14 patients developed manic symptoms during the placebo phase, correlating with relative increases in perfusion of superior anterior cingulate and possibly left orbito-frontal cortex.ConclusionsThe important effect of lithium withdrawal on brain perfusion implies that after withdrawal of lithium, the brain develops an abnormal state of activity in limbic cortex. The structures involved did not co-localise with those apparently modulated by manic symptoms.


2009 ◽  
Vol 23 (4) ◽  
pp. 409-412 ◽  
Author(s):  
Saeid Atighechi ◽  
Hadi Salari ◽  
Mohammad Hossein Baradarantar ◽  
Rozita Jafari ◽  
Ghasem Karimi ◽  
...  

Background Loss of smell is a problem that can occur in up to 30% of patients with head trauma. The olfactory function investigation methods so far in use have mostly relied on subjective responses given by patients. Recently, some studies have used magnetic resonance imaging (MRI) and single-photon emission computed tomography (SPECT) to evaluate patients with post-traumatic anosmia. The present study seeks to detect post-traumatic anosmia and the areas in the brain that are related to olfactory impairment by using SPECT and MRI as imaging techniques. Methods The study was conducted on 21 patients suffering from head injury and consequently anosmia as defined by an olfactory identification test. Two control groups (traumatic normosmic and nontraumatic healthy individuals) were selected. Brain MRI, qualitative and semiquantitative SPECT with 99mtc-ethyl-cysteinate-dimer were taken from all the patients. Then the brain SPECT and MRI were compared with each other. Results Semi-quantitative assessment of the brain perfusion SPECT revealed frontal, left parietal, and left temporal hypoperfusion as compared with the two control groups. Eighty-five percent of the anosmic patients had abnormal brain MRI. Regarding the MRI, the main abnormality proved to be in the anterior inferior region of the frontal lobes and olfactory bulbs. Conclusions The findings of this study suggest that damage to the frontal lobes and olfactory bulbs as shown in the brain MRI and hypoperfusion in the frontal, left parietal, and left temporal lobes in the semiquantitative SPECT corresponds to post-traumatic anosmia. Further neurophysiological and imaging studies are definitely needed to set the idea completely.


Author(s):  
N. A. Nikolov ◽  
T. H. Novikova ◽  
S. S. Makeуev

Background. According to single-photon emission computed tomography (SPECT) data, the most common technique to calculate volume cerebral blood flow (VCBF) is N.A. Lassen method. Following it, VCBF in different segments of the brain is assessed in comparison with blood flow in the cerebellum, where it is considered to be constant. However, this approach does not take into account that in some pathologies, in particular, injuries, occlusions of blood vessels, VCBF of the cerebellum also does change. Therefore, an original technique of calculating regional VCBF based on polyphase scintigraphy has been developed, which will make it possible to make a more accurate assessment of the effective perfusion of the brain. Purpose – to evaluate the clinical informative value of the developed technique for calculating effective cerebral blood flow according to 99mTc-HMPAO (hexamethylpropyleneaminoxime) polyphase brain scintigraphy data. Materials and methods. The study is focused on analyzing two groups of patients: Group A represented by patients with signs of chronic cerebral ischemia and Group B enrolling patients in the interim and long term of explosive minor brain injury (n=22). Group A patients were divided into two subgroups, depending on the presence of structural and hemodynamic changes in the vertebral arteries (VA) according to ultrasound (US) of the major vessels of the brain. I-A subgroup (n=13) was made up by those patients who had structural lesions of the vertebrobasilar basin; II-A (n=27) patients had no relevant signs. All patients underwent a comprehensive clinical examination including neuropsychological testing, ultrasound of major vessels, magnetic resonance imaging, single-photon emission computed tomography (SPECT). Effective volume cerebral blood flow (VCBF), according to the SPECT data, was calculated based on the original technique (VCBFSB). VCBFSB values were compared with the SPECT data using N.A. Lassen (VCBFLassen) method and the ultrasound data. Results and discussion. Analysing the data of the groups of patients with hemodynamic impairment in the vertebro-basilar basin shows that, according to the scintigraphy of VCBF, I-A group patients differ from II-A group on average 1.82± 0.06 times the amount for CBFSB and 0.95± 0.04 for CBFLassen. The total mean blood flow   in   the   carotid   and   vertebral   arteries   of I-A group patients was 748.19±198.42 mL/min, II-A group patients – 1112.23±63.71 mL/min. Comparing the mean values of the hemodynamic parameters of the brain of Group B patients with the data of Group II-A patients, VCBFSB was 1.33±0.25-fold decreased, while CBFLassen showed 1.03±0.14-fold decrease of perfusion (in total average blood flow of vertebral and carotid arteries according to US of Group B – 1760±580 ml/min). Conclusions. Preliminary clinical studies, using the developed technique for calculating volume cerebral blood flow according to 99mTc-HMPAO scintigraphy data with the corresponding software, showed a rather high sensitivity in assessing VCBF in case of pathological changes in the brain, especially, in occlusion of the major vessels of the brain and contusions resulting from battle trauma, whereas N.A. Lassen method was insufficiently informative. The regression analysis of US data, SPECT data and neuropsychological testing shows clear linear correlation relationships, but they do also differ in sign depending on the diagnosis and the degree of pathological changes.


CNS Spectrums ◽  
2004 ◽  
Vol 9 (4) ◽  
pp. 292-301 ◽  
Author(s):  
Susan E. Kennedy ◽  
Jon-Kar Zubieta

ABSTRACTTechniques such as positron emission tomography and single photon emission computed tomography allow for the imaging of neurotransmitter receptors and transporters in the brain. These tools have been used to investigate serotonergic, dopaminergic, and opioidergic function in healthy subjects as well as in patients with major depressive disorder, bipolar disorder, and other mood disorders. Pharmacologic challenges, such as amphetamine challenge, and physiologic stressors, such as pain challenge, have been used to further examine the function of these neurotransmitter systems. Neuroimaging of patient populations before and after medication treatment may be useful to understand changes in neurotransmission that accompany disease remission. As new radiotracers with higher selectivity for the various receptors and transporters are developed, imaging techniques may provide new insights into the pathophysiolagy of mood disorders, leading to improved diagnosis and treatment.


2012 ◽  
Vol 11 (2) ◽  
pp. 7290.2011.00036 ◽  
Author(s):  
Vincent Keereman ◽  
Yves Fierens ◽  
Christian Vanhove ◽  
Tony Lahoutte ◽  
Stefaan Vandenberghe

Attenuation correction is necessary for quantification in micro–single-photon emission computed tomography (micro-SPECT). In general, this is done based on micro–computed tomographic (micro-CT) images. Derivation of the attenuation map from magnetic resonance (MR) images is difficult because bone and lung are invisible in conventional MR images and hence indistinguishable from air. An ultrashort echo time (UTE) sequence yields signal in bone and lungs. Micro-SPECT, micro-CT, and MR images of 18 rats were acquired. Different tracers were used: hexamethylpropyleneamine oxime (brain), dimercaptosuccinic acid (kidney), colloids (liver and spleen), and macroaggregated albumin (lung). The micro-SPECT images were reconstructed without attenuation correction, with micro-CT-based attenuation maps, and with three MR-based attenuation maps: uniform, non-UTE-MR based (air, soft tissue), and UTE-MR based (air, lung, soft tissue, bone). The average difference with the micro-CT-based reconstruction was calculated. The UTE-MR-based attenuation correction performed best, with average errors ≤ 8% in the brain scans and ≤ 3% in the body scans. It yields nonsignificant differences for the body scans. The uniform map yields errors of ≤ 6% in the body scans. No attenuation correction yields errors ≥ 15% in the brain scans and ≥ 25% in the body scans. Attenuation correction should always be performed for quantification. The feasibility of MR-based attenuation correction was shown. When accurate quantification is necessary, a UTE-MR-based attenuation correction should be used.


1994 ◽  
Vol 10 (4-5) ◽  
pp. 573-577
Author(s):  
Theodore R. Simon ◽  
David C. Hickey ◽  
Cynthia E. Fincher ◽  
Alfred R. Johnson ◽  
Gerald H. Ross ◽  
...  

Chemical sensitivities display a recurrent pattern on scintigraphic examinations of the brain. The pattern can include mismatching between early and late imaging, multiple hot and cold foci distributed throughout the cortex without regard to lobar distribution (salt and pepper pattern), temporal asymmetries, and sometimes increased activity in the basal ganglia. This study used Desert Shield/Desert Storm veterans who present with abnormal neurological and psychological symptoms as a model to exhibit abnormalities by brain scintigraphy. These are typical of those seen in patients with documented exposure to neurotoxic compounds who develop a clinical syndrome that has been termed chemical sensitivity. Exposure to cocaine, alcohol, and other substances of abuse can result in abnormal scintigrams of the brain using tracers such as [technetium 99m]hexamethylpropyleneoxime. This study used techniques combining regional cerebral blood flow data with delayed distributional data after the intracellular conversion of the tracer into a hydrophilic molecule. In addition to delayed image abnormalities, a mismatch occurs in the regional activity between the two image sets of the veterans. This degree of mismatch was not seen in control subjects who were screened for avoidance of neurotoxic agents. Patterns identified from examinations performed on patients with known exposure to petroleum distillates, pesticides and other materials linked with neurotoxicity were identified in some veterans of the Desert Shield/Desert Storm operation. A single case of repeated examinations on a veteran showed a reversion of these patterns toward normal after therapy. This reversion followed independent assessments of clinical improvement.


Sign in / Sign up

Export Citation Format

Share Document