Study on the Calculation Method of Earth Pressure on Retaining Wall in the Mode of Translation

2015 ◽  
Vol 1089 ◽  
pp. 292-298
Author(s):  
Zhi Xiong Zhang ◽  
Yong Gang Li ◽  
Chao Tian

Focusing on rigid retaining wall under translation movement mode, the earth pressure under non-limit state considering translational movement effect is studied. Considering the translational displacement effect of internal friction angle of the backfill and the wall soil friction angle,we established the relation formula between internal and external friction angle and displacement and got strength and distribution of horizontal earth pressure, strength and the acting point of resultant force on retaining walls at any displacement in mode of translation. We also compare the calculation of earth pressure obtained by the calculation method proposed in this paper with the measured values of the model and found and they are on the whole the same.

2019 ◽  
Vol 2019 ◽  
pp. 1-10
Author(s):  
Zhihui Wang ◽  
Aixiang Wu ◽  
Yiming Wang

A method was proposed to calculate the earth pressure from a cohesionless backfill with a high aspect ratio (ratio of height to width of retaining wall). An exponential equation of slip surface was proposed first. The proposed nonlinear slip surface equation can be obtained once the width and height of the backfill as well as the internal friction angle of the backfill were given. The failure surface from the proposed formula agreed well with the experimental slip surface. Then, the earth pressure was calculated using a simplified equilibrium equation based on the proposed slip surface. It is assumed that the minor principal stress of the backfill near the wall and at its corresponding slip surface where the depth is the same is the same. Thus, based on the vertical force balance of the horizontal backfill strip, assuming the wall-soil interface and the slip surface is in the limit equilibrium state, defined by the Mohr–Coulomb criterion, the differential equilibrium equation was obtained and numerically solved. The calculated results agreed well with the test data from the published literature.


2012 ◽  
Vol 193-194 ◽  
pp. 1234-1238
Author(s):  
Qing Guang Yang ◽  
Shan Huang Luo ◽  
Jie Liu

Passive earth pressure brought into play depends on displacement ratio, s/sc ,of retaining wall in site and limit state close. Base on friction angle discount coefficient and differential layer method,an estimating method for unlimited state passive earth pressure is set up for cohesiveless soil retaining wall with translation mode.Study indicates that values of passive earth pressure by method in this paper are lower than by Coulomb earth pressure theory.The difference of passive earth pressure by both methods is magnified with decrease of displacement ratio, s/sc and angle,β ,respectively. The critical angle of soil in here is smaller than Coulomb earth pressure theory and it diminishs with the decrease of displacement ratio, s/sc. Moreover, critical angle will minish with increase of angleβwhen displacement ratio, s/sc ,is immovable.Analytical results also show that action point of passive earth pressure is under 1/3 times height of retaining wall and keep descending with the increase of displacement ratio, s/sc ,and angle,β.


2011 ◽  
Vol 250-253 ◽  
pp. 1572-1577
Author(s):  
Tai Hua Yang ◽  
Huai Jian He

Assuming the internal friction angle of backfill and the displacement are in nonlinear, to adopt the calculation model that was put forward by the author, combined with the in-room model experiment, to calculate and analyze the passive earth pressure acted on the retaining wall in the model of RBT movement. The analysis results show: the calculated values and the test values can agree with each other very well in the three ways of the distribution of earth pressure along the wall height, the values of the passive total force and its action point position. So it is feasible to use the calculation model to calculate the passive earth pressure in the model of RBT movement. Comparatively, when n = 0 the calculated values are the most identical with the test values, when n = 0.25 are worse, when n = 0.5 are the worst. Those may be relative to the sizes effect of the box of model test and the property of the interface between the soil and the plate at the bottom of model box. In addition, with the value of n increasing gradually, the maximum displacement needed to reach Rankine’s passive limit state will be decreased.


2013 ◽  
Vol 353-356 ◽  
pp. 2073-2078
Author(s):  
Tian Zhong Ma ◽  
Yan Peng Zhu ◽  
Chun Jing Lai ◽  
De Ju Meng

Slope anchorage structure of soil nail is a kind of economic and effective flexible slope supporting structure. This structure at present is widely used in China. The supporting structure belong to permanent slope anchorage structure, so the design must consider earthquake action. Its methods of dynamical analysis and seismic design can not be found for the time being. The seismic design theory and method of traditional rigidity retaining wall have not competent for this new type of flexible supporting structure analysis and design. Because the acceleration along the slope height has amplification effect under horizontal earthquake action, errors should be induced in calculating earthquake earth pressure using the constant acceleration along the slope height. Considering the linear change of the acceleration along the slope height and unstable soil with the fortification intensity the influence of the peak acceleration, the earthquake earth pressure calculation formula is deduced. The soil nailing slope anchorage structure seismic dynamic calculation model is established and the analytical solutions are obtained. The seismic design and calculation method are given. Finally this method is applied to a case record for illustration of its capability. The results show that soil nailing slope anchorage structure has good aseismic performance, the calculation method of soil nailing slope anchorage structure seismic design is simple, practical, effective. The calculation model provides theory basis for the soil nailing slope anchorage structure of seismic design. Key words: soil nailing; slope; earthquake action; seismic design;


2012 ◽  
Vol 49 (6) ◽  
pp. 651-658 ◽  
Author(s):  
Pérsio L.A. Barros ◽  
Petrucio J. Santos

A calculation method for the active earth pressure on the possibly inclined face of a retaining wall provided with a drainage system along the soil–structure interface is presented. The soil is cohesionless and fully saturated to the ground surface. This situation may arise during heavy rainstorms. To solve the problem, the water seepage through the soil is first analyzed using a numerical procedure based on the boundary element method. Then, the obtained pore-water pressure is used in a Coulomb-type formulation, which supposes a plane failure surface inside the backfill when the wall movement is enough to put the soil mass in the active state. The formulation provides coefficients of active pressure with seepage effect which can be used to evaluate the active earth thrust on walls of any height. A series of charts with values of the coefficients of active earth pressure with seepage calculated for selected values of the soil internal friction angle, the wall–soil friction angle, and the wall face inclination is presented.


2014 ◽  
Vol 5 (1) ◽  
pp. 39-57
Author(s):  
Sima Ghosh ◽  
Arijit Saha

In the present analysis, using the horizontal slice method and D'Alembert's principle, a methodology is suggested to calculate the pseudo-dynamic active earth pressure on battered face retaining wall supporting cohesive-frictional backfill. Results are presented in tabular form. The analysis provides a curvilinear rupture surface depending on the wall-backfill parameters. Effects of a wide range of variation of parameters like wall inclination angle (a), wall friction angle (d), soil friction angle (F), shear wave velocity (Vs), primary wave velocity (Vp), horizontal and vertical seismic accelerations (kh, kv) along with horizontal shear and vertical loads and non-linear wedge angle on the seismic active earth pressure coefficient have been studied.


2012 ◽  
Vol 204-208 ◽  
pp. 718-721 ◽  
Author(s):  
Peng Li ◽  
Xiao Song

The traditional formula using for the calculation of Expressway on high embankment of the retaining wall and the earth pressure can not be very good practical. In order to accurately determine the soil pressure calculation of the complex retaining wall in construction stage for guaranteeing the engineering safety, the experiment study on soil pressure is done, and the study on soil pressure monitoring data is also done. Then the valuable conclusions are obtained to facilitate better practical guidance for construction.


2012 ◽  
Vol 3 (2) ◽  
pp. 15-24 ◽  
Author(s):  
Sima Ghosh

Knowledge of passive resistance is extremely important and it is the basic data required for the design of geotechnical structures like the retaining wall moving towards the backfill, the foundations, the anchors etc. An attempt is made to develop a formulation for the evolution of seismic passive resistance of a retaining wall supporting c-F backfill using pseudo-static method. Considering a planar rupture surface, the formulation is developed in such a way so that a single critical wedge surface is generated. The variation of seismic passive earth pressure coefficient are studied for wide range of variation of parameters like angle of internal friction, angle of wall friction, cohesion, adhesion, surcharge, unit weight of the backfill material, height and seismic coefficients.


2012 ◽  
Vol 268-270 ◽  
pp. 725-728
Author(s):  
Yi Huan Xie

The passive earth pressure on the both sides of a sheet pile retaining wall is owing to plasticity bounded, a fact that affects the horizontal loading capacity of the wall. In order to find out a method, that the loading capacity of the wall can be analytically calculated and the mentioned constrain could be token into account, the paper set up a DIMSP model, which consists of mechanics equilibrium principle including two inequalities for the plasticity condition of earth pressure. The deduced solution of the model is capable of calculating the bearing capacity, and possesses the advantages of no additional correction of the cut in depth of the wall. Further more the continuity of earth pressure distribution is ensured by this model, an adjustment of the earth pressure figure is also without difficulty possible. For engineering application some graphics are given, the cut in depth of the wall can be read from them conveniently.


Sign in / Sign up

Export Citation Format

Share Document