Influence Factors of Efficient Injection Molding of Plastic Precise Gear by Simulation of CAE Software and Visualization Experiment

2006 ◽  
Vol 11-12 ◽  
pp. 721-724
Author(s):  
Peng Cheng Xie ◽  
Wei Min Yang ◽  
Yu Mei Ding ◽  
Gao Pin Yang ◽  
Jing Zhang

The filling process of plastic precise gear is simulated by CAE software and the factors that influence injection molding accuracy in single cavity mold are discussed in this paper. With the assistant of visualization technology, the mechanism of filling unbalance which influences efficient injection molding was especially studied. The model of filling unbalance was supposed that was verified experimentally by visualization technique. It is clarified that the mechanism of filling unbalance results from dissymmetrical temperature distribution on the cross-section of runner, which is strongly influenced by the shear heat and the cooling process in the runner. At the same time, a new method was proposed for improving the filling imbalance by applying appropriate injection molding process without any changes in runner shape of multi-cavity mold.

Author(s):  
Carlos Rodríguez-Mondéjar ◽  
Álvaro Rodríguez-Prieto ◽  
Ana María Camacho

Abstract Injection overmolding process is a high versatile process that permits, when used in combination with fiber reinforced thermoplastic composites, the obtaining of high mechanical properties structures with complex geometries in short time cycles. The maximum flow length is a parameter that reflects the success of filling in a polymer injection molding process. Geometry of the part, rheological properties of the polymer and process parameters, such as injection pressure and temperature, are involved on the value of this parameter and therefore on the viability of a certain configuration. For injection molding manufacturing, the understanding of the relation between maximum flow length and main geometrical parameters of the molded part is fundamental to approach the product design, which is conditioned severely by processing capabilities. In this work, the maximum flow length is obtained for different geometries of an overmolded rectangular stiffener grid of carbon fiber filled polyether eter ketone (CF-PEEK) using the software Moldflow© Adviser© for calculations. Value of maximum flow length is provided as a function of cross section aspect ratio for gate diameters between 0.8 mm and 1.4 mm and cross section areas from 10 to 50 mm2. An exponential decrement of maximum flow length has been observed with the increment of aspect ratio of the cross section as well as a linear increment with the increment of cross section area. Gate diameter variation is slightly related with maximum flow length for the simulated values. These results provide a support tool for geometry sizing in overmolded rectangular grid parts at preliminary design stages.


2011 ◽  
Vol 271-273 ◽  
pp. 1224-1227
Author(s):  
Fang Qi Cheng

To avoid the defects of plastic products and improve product quality have been an important problem for mold designers. In this paper, Autodesk Moldflow software are applied to a plastic control cover injection molding process simulation and find out the actual molding process and true conditions of the dynamic filling, pressure and cooling process in the process of forming. The forming process of parameters such as pressure, temperature and speed are given in order to improve the accuracy of the mould design and product precision.


2013 ◽  
Vol 749 ◽  
pp. 161-167
Author(s):  
Zou Shun Zheng ◽  
Rui Rui Leng

According to the metal powder injection molding process, the main influence factors of injection molding billet density distribution (such as: injection velocity, injection temperature, injection pressure, etc) was analyzed and a multiple input & multiple output BP neural network model for injection molding was build up to predict the density distribution of the billet intelligently based on ANN and GA. In addition, in light of the requirements for the density distribution of the metal injection molding billet, the influence factors were controlled intelligently. Applying this model in the metal injecting process, the density distribution of billet was predicted according to the injection parameters and the injection parameters was optimized according to the required density distribution of the billet. As the result, the error was less than 5% between the prediction values and the actual values of the density distribution of billet. With the optimized injection parameters to the injection process, the density distribution of billet closed to the requirements was achieved.


2016 ◽  
Vol 36 (2) ◽  
pp. 139-148 ◽  
Author(s):  
Tangqing Kuang ◽  
Chuncong Yu ◽  
Baiping Xu ◽  
Lih-Sheng Turng

Abstract The fluid-assisted co-injection molding (FACIM) process can be used to produce hollow plastic products with outer and inner layers. It can be divided into two categories: water-assisted co-injection molding (WACIM) and gas-assisted co-injection molding (GACIM). An experimental study of penetration interfaces in overflow FACIM was carried out based on a lab-developed FACIM system. High-density polyethylene and polypropylene were used as the outer layer and inner layer plastics, respectively, in the experiments and the injection sequence was reversible. Six cross-section cavities were investigated in the experiments. The penetration behaviors of water and gas in different sequences and cavities were compared and analyzed. The penetration interfaces were characterized by the residual wall thickness (RWT). The experimental results showed that the RWT of the inner layer in WACIM fluctuated along the flow direction, while that in GACIM was more even. The difference of viscosity between the outer and inner layer melts affected the stability of the interface between them. The penetration sections of the inner layer and the gas were closer to the cavity sections in GACIM, while the penetration sections of the inner layer and the water were closer to the circular forms in WACIM.


2013 ◽  
Vol 133 (4) ◽  
pp. 105-111
Author(s):  
Chisato Yoshimura ◽  
Hiroyuki Hosokawa ◽  
Koji Shimojima ◽  
Fumihiro Itoigawa

Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 965 ◽  
Author(s):  
Nguyen Truong Giang ◽  
Pham Son Minh ◽  
Tran Anh Son ◽  
Tran Minh The Uyen ◽  
Thanh-Hai Nguyen ◽  
...  

In the injection molding field, the flow of plastic material is one of the most important issues, especially regarding the ability of melted plastic to fill the thin walls of products. To improve the melt flow length, a high mold temperature was applied with pre-heating of the cavity surface. In this paper, we present our research on the injection molding process with pre-heating by external gas-assisted mold temperature control. After this, we observed an improvement in the melt flow length into thin-walled products due to the high mold temperature during the filling step. In addition, to develop the heating efficiency, a flow focusing device (FFD) was applied and verified. The simulations and experiments were carried out within an air temperature of 400 °C and heating time of 20 s to investigate a flow focusing device to assist with external gas-assisted mold temperature control (Ex-GMTC), with the application of various FFD types for the temperature distribution of the insert plate. The heating process was applied for a simple insert model with dimensions of 50 mm × 50 mm × 2 mm, in order to verify the influence of the FFD geometry on the heating result. After that, Ex-GMTC with the assistance of FFD was carried out for a mold-reading process, and the FFD influence was estimated by the mold heating result and the improvement of the melt flow length using acrylonitrile butadiene styrene (ABS). The results show that the air sprue gap (h) significantly affects the temperature of the insert and an air sprue gap of 3 mm gives the best heating rate, with the highest temperature being 321.2 °C. Likewise, the actual results show that the height of the flow focusing device (V) also influences the temperature of the insert plate and that a 5 mm high FFD gives the best results with a maximum temperature of 332.3 °C. Moreover, the heating efficiency when using FFD is always higher than without FFD. After examining the effect of FFD, its application was considered, in order to improve the melt flow length in injection molding, which increased from 38.6 to 170 mm, while the balance of the melt filling was also clearly improved.


Sign in / Sign up

Export Citation Format

Share Document