Exploration of Using Deep Eutectic Solvents to Separate Methyl Palmitate from Simulated Biodiesel Mixtures

2015 ◽  
Vol 1101 ◽  
pp. 249-251 ◽  
Author(s):  
Bao Kun Tang ◽  
Yu Jin Lee ◽  
Kyung Ho Row

Biodiesel purification from the crude biodiesel product has attracted much attention in recent years, and one low cost and simple purification process is urgent to explore. The separation of methyl palmitate from the crude biodiesel products is a key point. In this work, a series of choline chloride based deep eutectic solvents (DESs) is explored as a solvent for separation of methyl palmitate from the simulated biodiesel product. The work showed that the choline chloride-ethylene glycol DES had a excellent effect on the separation of methyl palmitate, and high purity of methyl palmitate were obtained with the choline chloride to ethlene glycol ratio decrease or with the choline chloride-ethylene glycol DES to biodiesel ratio increase.

2017 ◽  
Vol 19 (7) ◽  
pp. 1653-1658 ◽  
Author(s):  
Hugo Cruz ◽  
Noémi Jordão ◽  
Luís C. Branco

The application of deep eutectic solvents based on choline chloride or lithium chloride with ethylene glycol and glycerol as low-cost, recyclable and green electrolytes for electrochromic devices is reported.


CrystEngComm ◽  
2021 ◽  
Author(s):  
Hajime Wagata ◽  
Ginji Harada ◽  
Eriko Nakashima ◽  
Motoki Asaga ◽  
Tomoaki Watanabe ◽  
...  

ZnO mesocrystals have been explored for various physical and chemical applications. In spite of effort by a number of researches, it is still difficult to grow specific crystal shapes in...


2020 ◽  
Vol 242 ◽  
pp. 116783 ◽  
Author(s):  
Anita Šalić ◽  
Ana Jurinjak Tušek ◽  
Martin Gojun ◽  
Bruno Zelić

Energies ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 3379
Author(s):  
Edyta Słupek ◽  
Patrycja Makoś ◽  
Jacek Gębicki

This paper presents the theoretical screening of 23 low-cost deep eutectic solvents (DESs) as absorbents for effective removal of the main impurities from biogas streams using a conductor-like screening model for real solvents (COSMO-RS). Based on thermodynamic parameters, i.e., the activity coefficient, excess enthalpy, and Henry’s constant, two DESs composed of choline chloride: urea in a 1:2 molar ratio (ChCl:U 1:2), and choline chloride: oxalic acid in a 1:2 molar ratio (ChCl:OA 1:2) were selected as the most effective absorbents. The σ-profile and σ-potential were used in order to explain the mechanism of the absorptive removal of CO2, H2S, and siloxanes from a biogas stream. In addition, an economic analysis was prepared to demonstrate the competitiveness of new DESs in the sorbents market. The unit cost of 1 m3 of pure bio-methane was estimated to be in the range of 0.35–0.37 EUR, which is comparable to currently used technologies.


2016 ◽  
Vol 18 (3) ◽  
pp. 826-833 ◽  
Author(s):  
Xavier Marset ◽  
Juana M. Pérez ◽  
Diego J. Ramón

The synthesis of different tetrahydroisoquinolines using choline chloride : ethylene glycol as a deep eutectic solvent (DES) and copper(ii) oxide impregnated on magnetite as a catalyst has been accomplished successfully.


2018 ◽  
Vol 6 (45) ◽  
pp. 22566-22579 ◽  
Author(s):  
Uma V. Ghorpade ◽  
Mahesh P. Suryawanshi ◽  
Seung Wook Shin ◽  
Jihun Kim ◽  
Soon Hyung Kang ◽  
...  

Deep eutectic solvents (DESs) based on choline chloride/ethylene glycol have been explored as synthetic media for Cu–Sb–S based colloidal quantum dots for unassisted solar water splitting.


Author(s):  
F.I. Danilov ◽  
◽  
Y.D. Rublova ◽  
V.S. Protsenko ◽  
◽  
...  

Adsorption of the components of deep eutectic solvent ethaline (ethylene glycol and choline chloride) on mercury electrode is investigated by electrocapillary measurements. It is determined that choline cations are mainly adsorbed on the negatively charged surface of mercury, while chloride anions are mainly adsorbed on the positively charged surface. The corresponding values of free energies of adsorption and interactions of adsorbate and solvent with metal are calculated and analyzed. An anomalous increase in both the apparent value of the adsorption at limiting coverage and the free energy of the interaction of the choline cation with mercury is observed in the transition from aqueous to ethylene glycol solutions, which is explained by the formation of complexes in a surface layer that exist in deep eutectic solvents and are capable of adsorbing on the electrode surface. The free energy of interaction with the mercury surface is higher than the energy of squeezing out from the volume of the solution onto its surface, which indicates the specific interaction of the adsorbate with mercury. A marked decrease in interfacial tension on both branches of the electrocapillary curve is observed when water is added to ethaline.


2020 ◽  
Vol 10 (5) ◽  
pp. 6488-6497

Deep eutectic solvents (DESs) are systems formed from one or more compounds in a mixture form, to give a eutectic with a melting point much lower than either of the individual components. DESs have attracted considerable attention as green alternative solvents to conventional solvents because they are not only eco-friendly, non-toxic, and biodegradable organic compounds, but also low cost and easy to produce.and share several features and properties. DESs not only have particular properties in comparison with traditional organic solvents, but also their combination with organic solvents may also show improved and desired properties. In this study, DESs were used as the solvent in buffer containing organophosphorus hydrolase enzyme, in order to optimize the enzyme reaction buffer. Different DESs such as reline (choline chloride 2:1 urea), ethaline (choline chloride 2:1 ethanol) and glyceline (choline chloride 2:1 glycerol) were selected as an adjuvant for OPH enzyme reaction buffer. Biochemical properties, thermal stability and half-life of the OPH enzyme were studied, accordingly. In the reline, a reduction in the activity of the enzyme and in ethaline and glyceline, an increase in the activity and the stability were observed when compared with the buffer. The highest activity and stability in ethaline and glyceline in molar fraction was 0.025 and 0.25, respectively.


Sign in / Sign up

Export Citation Format

Share Document