organophosphorus hydrolase
Recently Published Documents


TOTAL DOCUMENTS

186
(FIVE YEARS 25)

H-INDEX

39
(FIVE YEARS 3)

2021 ◽  
Vol 22 (23) ◽  
pp. 12624
Author(s):  
Léa El Khoury ◽  
David L. Mobley ◽  
Dongmei Ye ◽  
Susan B. Rempe

Organophosphorus hydrolase (OPH) is a metalloenzyme that can hydrolyze organophosphorus agents resulting in products that are generally of reduced toxicity. The best OPH substrate found to date is diethyl p-nitrophenyl phosphate (paraoxon). Most structural and kinetic studies assume that the binding orientation of paraoxon is identical to that of diethyl 4-methylbenzylphosphonate, which is the only substrate analog co-crystallized with OPH. In the current work, we used a combined docking and molecular dynamics (MD) approach to predict the likely binding mode of paraoxon. Then, we used the predicted binding mode to run MD simulations on the wild type (WT) OPH complexed with paraoxon, and OPH mutants complexed with paraoxon. Additionally, we identified three hot-spot residues (D253, H254, and I255) involved in the stability of the OPH active site. We then experimentally assayed single and double mutants involving these residues for paraoxon binding affinity. The binding free energy calculations and the experimental kinetics of the reactions between each OPH mutant and paraoxon show that mutated forms D253E, D253E-H254R, and D253E-I255G exhibit enhanced substrate binding affinity over WT OPH. Interestingly, our experimental results show that the substrate binding affinity of the double mutant D253E-H254R increased by 19-fold compared to WT OPH.


Author(s):  
Tong Fu ◽  
Chengjie Xu ◽  
Rongrong Guo ◽  
Changxu Lin ◽  
Yanyan Huang ◽  
...  

2021 ◽  
Author(s):  
Léa El Khoury ◽  
David Mobley ◽  
Dongmei Ye ◽  
Susan Rempe

<p>Organophosphorus (OP) compounds are among the most toxic of chemical substances and widely used as insecticides, pesticides, and chemical warfare agents. The most important enzyme inhibited by OP compounds is acetylcholinesterase (AChe). Inactivation of AChe function results in the accumulation of neurotransmitter, leading to death due to serious respiratory disorders. Organophosphorus hydrolase (OPH), also called phosphotriesterase, is a homo-dimeric metalloenzyme that can hydrolyze various OP agents in the circulatory system, resulting in products that are generally of reduced toxicity. The best OPH substrate found to date is the insecticide diethyl p-nitrophenyl phosphate (paraoxon). Most structural and kinetic studies assume that the binding orientation of paraoxon is identical to that of diethyl 4-methylbenzylphosphonate, which is the only substrate analog co-crystallized with OPH. In the current work, we used a combined docking and molecular dynamics (MD) approach to predict the likely binding mode of paraoxon in the OPH active site. We identified a potential binding mode of paraoxon that does not match the binding mode of diethyl 4-methylbenzylphosphonate. Then, we used the predicted binding mode to run MD simulations on the wild type (WT) OPH complexed with paraoxon, and OPH mutants complexed with paraoxon. Additionally, we identified 3 hot-spot residues (D253, H254, and I255) involved in the stability of the OPH active site. To further assess these predictions, we then experimentally assayed single and double mutants involving these residues (D253E, H254S, I255S, D253E-H254R and D253E-I255G) for hydrolytic activity against paraoxon. Computational structural analysis of protein-substrate dynamics shows different hydrogen bonding profiles for mutants involving D253 (D253E, D253E-H254R, and D253E-I255G) compared to WT OPH. Additionally, the binding free energy calculations and the experimental kinetics (particularly, <i>k</i><sub>cat</sub> and <i>K<sub>M</sub></i>) of the reactions between each OPH mutant and paraoxon show that mutated forms D253E, D253E-H254R, and D253E-I255G exhibit enhanced activity over WT OPH. Interestingly, our experimental results show that the activity of the double mutant D253E-H254R increased by 19-fold compared to WT OPH.</p>


2021 ◽  
Author(s):  
Léa El Khoury ◽  
David Mobley ◽  
Dongmei Ye ◽  
Susan Rempe

<p>Organophosphorus (OP) compounds are among the most toxic of chemical substances and widely used as insecticides, pesticides, and chemical warfare agents. The most important enzyme inhibited by OP compounds is acetylcholinesterase (AChe). Inactivation of AChe function results in the accumulation of neurotransmitter, leading to death due to serious respiratory disorders. Organophosphorus hydrolase (OPH), also called phosphotriesterase, is a homo-dimeric metalloenzyme that can hydrolyze various OP agents in the circulatory system, resulting in products that are generally of reduced toxicity. The best OPH substrate found to date is the insecticide diethyl p-nitrophenyl phosphate (paraoxon). Most structural and kinetic studies assume that the binding orientation of paraoxon is identical to that of diethyl 4-methylbenzylphosphonate, which is the only substrate analog co-crystallized with OPH. In the current work, we used a combined docking and molecular dynamics (MD) approach to predict the likely binding mode of paraoxon in the OPH active site. We identified a potential binding mode of paraoxon that does not match the binding mode of diethyl 4-methylbenzylphosphonate. Then, we used the predicted binding mode to run MD simulations on the wild type (WT) OPH complexed with paraoxon, and OPH mutants complexed with paraoxon. Additionally, we identified 3 hot-spot residues (D253, H254, and I255) involved in the stability of the OPH active site. To further assess these predictions, we then experimentally assayed single and double mutants involving these residues (D253E, H254S, I255S, D253E-H254R and D253E-I255G) for hydrolytic activity against paraoxon. Computational structural analysis of protein-substrate dynamics shows different hydrogen bonding profiles for mutants involving D253 (D253E, D253E-H254R, and D253E-I255G) compared to WT OPH. Additionally, the binding free energy calculations and the experimental kinetics (particularly, <i>k</i><sub>cat</sub> and <i>K<sub>M</sub></i>) of the reactions between each OPH mutant and paraoxon show that mutated forms D253E, D253E-H254R, and D253E-I255G exhibit enhanced activity over WT OPH. Interestingly, our experimental results show that the activity of the double mutant D253E-H254R increased by 19-fold compared to WT OPH.</p>


Author(s):  
Qiamin Gu ◽  
Chuanxin Zhao ◽  
Gaoyun Chen ◽  
Xiuli Qi ◽  
Min Liu

Toxins ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 34
Author(s):  
Elena Efremenko ◽  
Olga Maslova ◽  
Nikolay Stepanov ◽  
Anvar Ismailov

Novel sensitive analytical agents that can be used for simple, affordable, and rapid analysis of mycotoxins are urgently needed in scientific practice, especially for the screening of perspective bio-destructors of the toxic contaminants. We compared the characteristics of a rapid quantitative analysis of different mycotoxins (deoxynivalenol, ochratoxin A, patulin, sterigmatocystin, and zearalenone) using acetyl-, butyrylcholinesterases and photobacterial strains of luminescent cells in the current study. The best bioindicators in terms of sensitivity and working range (μg/mL) were determined as follows: Photobacterium sp. 17 cells for analysis of deoxynivalenol (0.8–89) and patulin (0.2–32); Photobacterium sp. 9.2 cells for analysis of ochratoxin A (0.4–72) and zearalenone (0.2–32); acetylcholinesterase for analysis of sterigmatocystin (0.12–219). The cells were found to be more sensitive than enzymes. The assayed strains of photobacterial cells ensured 44%–83% lower limit of detection for deoxynivalenol and sterigmatocystin as compared to the previously known data for immobilized luminescent cells, and the range of working concentrations was extended by a factor of 1.5–3.5. Calibration curves for the quantitative determination of patulin using immobilized photobacteria were presented in this work for the first time. This calibration was applied to estimate the enzyme efficiency for hydrolyzing mycotoxins using zearalenone and His6-tagged organophosphorus hydrolase as examples.


Sign in / Sign up

Export Citation Format

Share Document