Samarium Ions Concentration Dependent Optical Enhancement in Phosphate Glass

2015 ◽  
Vol 1107 ◽  
pp. 449-453
Author(s):  
Ramli Arifin ◽  
Lee Pei San ◽  
Md Rahim Sahar ◽  
Sib Krishna Ghoshal ◽  
Khaidzir Hamzah

Glasses activated rare earth (RE) ions are demanding for photonic devices. Optimization of rare earth dopants, chemical composition of glass former and modifier decides spectra features. We synthesize a series of glass having composition (50-x)P2O5 - 30Li2O - 20Na2O - (x)Sm2O3, where x = 0 to 2.0 mol% (optimizing RE concentration) via melt-quenching technique. The effects of Sm2O3 concentration on significant enhancement of absorption and luminescence are scrutinized. The UV-Vis-NIR absorption spectra reveal ten band and the emission spectra exhibit four peaks specific to the dopant. The results suggest that samarium doped phosphate glasses are potential for laser and other applications.

2016 ◽  
Vol 675-676 ◽  
pp. 376-379 ◽  
Author(s):  
Narun Luewarasirikul ◽  
Piyachat Meejitpaisan ◽  
Jakrapong Kaewkhao

Lanthanum calcium phosphate glasses doped with Eu3+ ions in compositions 20La2O3:10CaO:(70-x)P2O5:xEu2O3 (where x = 0.05, 0.10, 0.50 and 1.50 mol%) were prepared by melt-quenching technique. The density and molar volume measurements were carried out at room temperature. The absorption spectra were investigated in the UV-Vis-NIR region from 200 to 2500 nm. The emission spectra of Eu3+-doped glasses centered at 590 nm (5D0→7F1), 612 nm (5D0→7F2), 652 nm (5D0→7F3) and 699 nm (5D0→7F4) have been observed with 393 nm excitation wavelength.


2015 ◽  
Vol 1119 ◽  
pp. 731-735
Author(s):  
W. Rachniyom ◽  
Y. Ruangtaweep ◽  
K. Boonin ◽  
K. Phachana ◽  
J. Kaewkhao

In this work, the subbituminous fly ash (SFA) in Thailand has been investigated for their compositions and crystal structures. Borosilicate glasses were prepare from SFA , B2O3, Na2O and various concentration of Fe2O3 by melt quenching technique. The results have shown that the chemical composition comprised with SiO2, Al2O3 and Fe2O3. The crystal structures of SFA were raised of mullite and quartz phases. The density and refractive index values of glasses were found to increase with increasing of Fe2O3 concentrations. The hardness values have been decreased with increasing of Fe2O3 content. The absorption spectra are corresponding to ferric and ferrous ions in wavelength of 440 nm and 1,050 nm and the color of glasses are green to yellow.


2008 ◽  
Vol 39-40 ◽  
pp. 61-64 ◽  
Author(s):  
M. Elisa ◽  
Ileana Cristina Vasiliu ◽  
Cristiana Eugenia Ana Grigorescu ◽  
B. Grigoras ◽  
H. Niciu ◽  
...  

A wet non-conventional method for preparing aluminophosphate glasses is presented. Aluminophosphate glasses belonging to the oxide system Li2O-BaO-Al2O3-La2O3-P2O5, doped with rare-earth ions (Pr3+, Er3+, Gd3+, and Yb3+) were obtained. The influence of the doping ions on the optical properties of the phosphate glasses has been investigated in relation with micro-structural and local electronic phenomena The optical behavior of Li2O-BaO-Al2O3-La2O3-P2O5 glasses doped with 3% mol. rare-earth ions has been studied by ultra-violet-visible-near-infra-red (UV-VISNIR) spectroscopy. The transmission spectra revealed electronic transitions between 4f and 6s inner orbital of the rare-earth ions. Structural information via optical phonons was provided by infra-red (IR) absorption spectra in the range 400-4000 cm-1. IR optical phonons are characteristic for the vitreous phosphate network, showing out the glass network-forming role of P2O5. The absorption spectra present the main PO2 and P-O-P symmetrical stretch modes besides P-O-P bend mode, P-OH, P=O, PO3 2-, asymmetrical and symmetrical vibration modes. Fluorescence spectra of the rareearth- doped aluminophosphate glasses, in the visible range, were obtained by laser excitation at 514.5 nm. The fluorescence signals revealed specific electronic transitions, which provide visible and near-infra-red emission. Glasses containing rare-earth ions exhibit luminescence at the following wavelengths: Pr3+ ions at 820 nm and 880 nm, Er3+ ions at 520 nm, 550 nm and 560 nm, Gd3+ ions at 530 nm, 540 nm, 550 nm 820 and 880 nm, Yb3+ions at 530 nm, 540 nm, 550 nm and 980 nm.


1967 ◽  
Vol 11 ◽  
pp. 230-240
Author(s):  
David W. Fischer ◽  
William L. Baun

AbstractThe Mα and Mβ emission spectra and the Mjv and My absorption spectra have been studied for the entire series of rare-earth elements. It is conclusively shown that the complicated multiplet structure observed in the emission spectra is not real emission structure but is, instead, produced by sample self-absorption. This is demonstrated by observing the emission spectra over wide variations in take-off angle and bombarding electron energies and finally by comparing the detailed structure of both the emission and absorption spectra. The MIV and MV absorption structure completely overlaps the Mα and Mβ emission lines, which are each found to have but one intensity maximum when obtained under conditions of minimum. self-absorption. Some of these spectra have never been shown previously, while others have been studied in detail by several investigators. Points of agreement and disagreement with previous work are mentioned, and the wavelengths of the emission lines and absorption edges are listed for all of the rare-earth elements. It is concluded that the 4f → 3d electron transitions are reversible in these elements.


2016 ◽  
Vol 675-676 ◽  
pp. 384-388 ◽  
Author(s):  
Piyachat Meejitpaisan ◽  
Chittra Kedkaew ◽  
C.K. Jayasankar ◽  
Jakrapong Kaewkhao

Dy3+-doped phosphate glasses of the compositions 20Gd2O3 : 10CaO : (70-x)P2O5 : xDy2O3, where x = 0.05, 0.10, 0.50, 1.00 and 1.50 mol% have been prepared by melt quenching technique and characterized by optical absorption, emission spectra and decay curve analysis. All the transitions in the absorption spectra are originated from the 6H15/2 ground level to the various excited states and these are intra configuration (f-f) transitions. The observed twelve absorption bands centered at 349, 362, 387, 425, 451, 473, 750, 800, 895, 1089, 1266 and 1676 nm are assigned to 6P7/2, 4P3/2, 4F7/2, 4G11/2, 4I15/2, 4F9/2, 6F3/2, 6F5/2, 6F7/2, 6F9/2, 6H9/2 and 6H11/2 transitions, respectively. The absorption spectra of glasses increase with increase in Dy3+ ion concentrations. The emission spectra of Dy3+-doped glasses are observed to be centered at 483, 573, 662 and 752 nm originated from the 4F9/2→6H15/2, 4F9/2→6H13/2, 4F9/2→6H11/2 and 4F9/2→6H9/2 transitions, respectively under excitation at 349 nm. The highest emission intensity of Dy3+-doped glass is 0.50 mol% due to concentration quenching effect. The experimental lifetimes are found to decrease when Dy3+ ion concentrations increased due to energy transfer process between Dy3+ ions.


2010 ◽  
Vol 161 ◽  
pp. 13-41
Author(s):  
B. Sudhakar Reddy ◽  
S. Buddhudu

We report here on the preparation and optical characterization of certain rare earth (Nd3+,Tb3+,Pr3+ &Tm3+ each in 0.2 mol %) ions doped in two new series glasses in the following composition: Series A: 69.8 B2O3 – 10 P2O5 – 10(ZnO/CdO/TeO2) – 10 AlF3 Series B: 69.8 B2O3 – 10 P2O5 – 10(ZnO/CdO/TeO2) – 10 LiF By applying the Judd-Ofelt intensity parameters of Nd3+: BFP glasses, radiative properties of the emission transitions ( 4F3/2 ®4IJ=9/2, 11/2 &13/2 ) at 906, 1079 and 1349nm have been evaluated. By applying the Judd-Ofelt intensity parameters, radiative properties for Er3+ ions doped glasses, the NIR emission (4I13/2 4I15/2 ) at 1547nm , and also visible green emission (4S3/2 4I15/2 ) at 547nm have been evaluated. Measured absorption spectra of Pr3+: BFP glasses have shown eight absorption bands at 443, 469, 481, 589 , 1008, 1419, 1523 and 1930 nm which correspond to the transitions 3H4 ®3P2, 3P1, 3P0, 1D2, 1G4,3F4, 3F3 and 3F2 respectively. Absorption spectra of Tm3+: glasses have revealed five absorption bands at 466, 685, 790, 1206 and 1644 nm which corresponding to the transitions 3H6®1G4, 3F3, 3H4, 3H5 and 3F4 respectively. Pr3+: glasses, with an excitation at 442nm (3H4 ®3P2), a orange-red emission at 600 nm (1D2® 3H4) has been observed. In the case of Tm3+: glasses, upon excitation with 355nm (3H6®1D2), blue emissions at 452 nm (1D2®3F4) and at 476 nm (1G4®3H6) are observed. From the measured NIR emission spectra of Pr3+: BFP glasses, an NIR emission at 1354nm (1G4®3H5) and form Tm3+: glasses, an NIR emission (3F4®3H6) at 1809 nm are observed with an Ar+ laser (514.5 nm) as the excitation source.


2008 ◽  
Vol 80 (3) ◽  
pp. 475-484 ◽  
Author(s):  
Tien-Yau Luh ◽  
Hsin-Chieh Lin ◽  
Chih-Ming Chou

By employing the furan annulation protocol, a new series of furan-containing teraryl [n.2]cyclophenes (n = 2-6 and 12) are prepared. These cyclophenes exhibit charge-transfer character in the absorption spectra and unusually large Stokes shifts in the emission spectra. They have neither particularly strong electron-donating moieties nor electron-withdrawing groups, but exhibit unusual second-order nonlinear optical (NLO) properties. The π-systems in teraryl system and in the bridging double bond are highly twisted. Interaction between these twisted π-systems may account for the significant enhancement in hyperpolarizability. Thiophene analog behaved similarly. The five-membered heteroaromatic rings may not only serve as electron donors, but also may accommodate the appropriate geometry to enable the interactions between the oligoaryl systems and the double bond leading to unusual photophysical and NLO properties.


2016 ◽  
Vol 675-676 ◽  
pp. 372-375 ◽  
Author(s):  
Suwat Rakpanich ◽  
Piyachat Meejitpaisan ◽  
Jakrapong Kaewkhao

Er3+-doped bismuth borosilicate glasses (Bi2O3+B2O3+SiO2+Er2O3) glasses doped with different Er2O3 concentrations (0, 0.50, 1.00, 1.50, 2.00, 2.50 mol%) have been prepared by melt quenching technique and their physical, optical and luminescence properties have been studied. The density of glasses showed the highest value at 4.7358 g/cm3 with 1.00 mol% of Er2O3. The optical absorption spectra of glasses were observed seven bands at 488, 523, 543, 654, 801, 975 and 1529 nm which assigned to the transitions 4I15/2→4F7/2, 2H11/2, 4S3/2, 4F9/2, 4I9/2, 4I11/2 and 4I13/2, respectively. The emission spectra of glasses were also investigated and discussed in term of energy level of Er3+ ion in glass matrices.


2016 ◽  
Vol 675-676 ◽  
pp. 409-413 ◽  
Author(s):  
Patarawagee Yasaka ◽  
Kitipun Boonin ◽  
Jakrapong Kaewkhao

In this study, the effect of zinc bismuth borate (ZBB) glass and bismuth borate glass (BB) doped with trivalent dysprosium ion were investigated. Glass were prepared by the conventional melt quenching technique, with the chemical composition of (60-x) B2O3: 30Bi2O3: 10ZnO: xDy2O3 and (70-x) B2O3: 30Bi2O3: xDy2O3 where x = 1.0 mol %. The results show the densities of glasses are 3.91 g/cm3(ZBB) and 4.24 g/cm3 (BB), respectively. The absorption spectra consists of six absorption bands that are located at 752, 796, 902, 1096, 1276 and 1681 nm, and are assigned to 6H15/2 to 6F3/2,6F5/2, 6F7/2, 6H7/2+6F9/2, 6F11/2+6H9/2 and 6H11/2 transitions. The emission spectra exhibited three emission bands corresponding to the 4F9/2 → 6H15/2 (483 nm; blue), 4F9/2 → 6H13/2 (575 nm; yellow) and 4F9/2 → 6H11/2 (664 nm; red) transitions. The lifetime for 4F9/2 → 6H13/2 transition are 0.178 ms (ZBB) and 0.420 ms (BB). Both of Dy3+ in ZBB and BB glasses have been show white emission and illustrated by CIE 1931 chromaticity coordinates.


2016 ◽  
Vol 702 ◽  
pp. 13-17
Author(s):  
S. Rakpanich ◽  
Piyachat Meejitpaisan ◽  
Sunantasak Ravangvong ◽  
Jakrapong Kaewkhao

This paper reports neodymium doped bismuth borosilicate glasses in composition (40-x)B2O3-40Bi2O3-20SiO2-xNd2O3 where x = 0, 0.5, 1.0, 1.5, 2.0 and 2.5 mol%, have been prepared by melt quenching technique and are characterized through physical properties structural properties, optical absorption spectra and emission spectra measurements. The density is found to increase with the increase in concentration of Nd2O3. The molar volumes of glass decrease where concentration of Nd2O3 where concentration of Nd2O3 is 0-0.5 mol% and beyond 0.5 mol% that molar volumes were increased. The absorption spectra of Nd3+-doped glass centered at 512 nm (4I9/2→2K13/2+4G9/2), 526 nm (4I9/2→4G7/2), 584 nm (4I9/2→4G5/2+2G7/2), 625 nm (4I9/2→2H11/2), 681 nm (4I9/2→4F9/2), 747 nm (4I9/2→4F7/2+4S3/2), 804 nm (4I9/2→4F5/2+2H9/2) and 877 nm (4I9/2→4F3/2) have been observed. The emission spectra of glass were also investigated.


Sign in / Sign up

Export Citation Format

Share Document