Production of Cellulase by Aspergillus niger FC-1 and its Application in Hydrolysis of Corncob Residues

2015 ◽  
Vol 1120-1121 ◽  
pp. 891-896
Author(s):  
Hui Qin Shi ◽  
Zhe Wei Zhao ◽  
Wei Yang ◽  
Di Wu ◽  
Yi Zhao ◽  
...  

In this study,the cellulase-producing ability of Aspergillusniger FC-1 through solid-state fermentation (SSF) and characteristics of the cellulase were investigated. The maximum activities of total cellulase (FPase) and endoglucanase (CMCase) were 8.2 and 31.5 IU per gram of dried substrate respectively after 96-h incubation period. The activities of both FPase and CMCase produced by Aspergillus niger FC-1 exhibited the optimal values at pH 5.5 and 50°C(as shown in Fig.2). Thermostability and pH stability of the enzymes were respectively appreciable at temperature ranging from 45°C to 55°C, pH ranging from 5.0 to 5.5. In addition, with an optimal 1:10 (w/v) substrate to moisture ratio (a cellulase loading of 8.5 FPU per cellulose), the glucose concentration was as high as 36.6 g glucose l-1 for a 48 h hydrolysis of corncob residues.

2018 ◽  
Vol 8 (01) ◽  
pp. 33
Author(s):  
Sri Sugiwati ◽  
Maggy Thenawidjaja Suhartono ◽  
Muhammad Hanafi ◽  
Hanifah Nuryani Lioe

Production of β-Glucosidase Aspergillus niger BIO 2173 on Solid State Fermentation Using Rice Bran as SubstrateAbstractβ-Glucosidase (EC 3.2.1.21) is a part of the cellulase enzyme complex which acts synergistically with exoglucanase and endoglucanase to hydrolyze cellulose into glucose. The purpose of this study was to obtain the maximum fermentation conditions for production of b-glucosidase Aspergillus niger BIO 2173 with solid state fermentation using rice bran as fermentation substrate. The factors that affect the production of b-glucosidase which consist of initial pH of the fermentation medium, incubation period, ratio of water content to fermentation substrate, incubation temperature and addition of the Mandel’s mineral salts solution were examined in the study. The results showed that maximum fermentation conditions for β-glucosidase production were at initial of fermentation pH of 2,0, incubation period of 7 days, ratio of water content to substrate of 1:1, and incubation temperature of 32oC. Addition of Mandel’s mineral salts solution to the fermentation substrate at maximum fermentation conditions increased the activity and specific activity of β-glucosidase crude extract up to 5,24 ± 0,57 U/mL and 2,46 ± 0,04 U/mg, respectively.Abstrakβ-Glukosidase (EC 3.2.1.21) merupakan bagian dari enzim multi kompleks selulase, yang bekerja secara sinergis dengan eksoglukanase dan endoglukanase menghidrolisis selulosa menjadi glukosa. Tujuan dari penelitian ini adalah mendapatkan kondisi fermentasi maksimum untuk produksi β-glukosidaseAspergillus niger BIO 2173 dengan fermentasi media padat menggunakan substrat dedak. Pengujian dilakukan terhadap faktor-faktor yang mempengaruhi produksi b-glukosidase, yaitu pH awal medium fermentasi, waktu inkubasi, perbandingan kandungan air terhadap substrat medium fermentasi, suhu inkubasi dan penambahan larutan garam mineral Mandels. Hasil penelitian menunjukkan bahwa kondisi fermentasi maksimum untuk produksi b-glukosidase adalah pada pH awal medium fermentasi 2,0; waktu inkubasi 7 hari, perbandingan kandungan air terhadap substrat medium fermentasi 1:1, dan suhu inkubasi 32oC. Penambahan larutan garam mineral Mandels ke dalam substrat fermentasi pada kondisi fermentasi maksimum menyebabkan peningkatan aktivitas dan aktivitas spesifk ekstrak kasar b-glukosidase masing-masing sebesar 5,24 ± 0,57 U/mL dan 2,46 ± 0,04 U/mg protein. Kata kunci: β-glukosidase, Aspergillus niger, dedak padi, fermentasi padat, ekstrak kasar


2020 ◽  
pp. 2525-2539
Author(s):  
Ali J. R. Al-Sa'ady ◽  
Ghazi M. Aziz

Lovastatin is one of the most important compounds that is produced from some filamentous fungi, being employed in the reduction of hypocholesterolemia. The results of screening, after the collection of seventy-three local fungal isolates from different areas, demonstrated that the local isolate Aspergillus terreus A50 was the best isolate for lovastatin production, with a concentration of 12.66 µg/ml, through the submerged fermentation. Lovastatin produced from A. terreus A50 showed antimicrobial activities against a Candida albicans isolate. Solid state fermentation (SSF) was the best system to produce the highest yield of lovastatin by A. terreus A50 as compared to the submerged fermentation (SmF) system, with and without agitation. The optimum conditions for lovastatin production by SSF were also determined. The parameters included carbon sources (wastes), carbon sources mixture, incubation temperature, and moisturizing solution, which are commonly used in classical procedures. The results showed that a higher lovastatin production of 102.321 µg/gm substrate was obtained in the culture containing wheat bran and oat bran (1:1 w:w), sodium acetate, moisture ratio of 1.2 v:w, pH 7, incubation temperature of 30 °C and incubation period of 6 days. Some of these parameters, including pH, incubation period, and moisture ratio were determined by utilizing the Response Surface Method (RSM) as a statistical approach.


2013 ◽  
Vol 781-784 ◽  
pp. 836-839
Author(s):  
Xiu Li Qin ◽  
Li Hui Zhao

In this paper, the condition of aspergillus niger and the bacillus subtilis mixing fermentation to produce soybean peptides was studied. The results indicated that the best fermentation condition of the aspergillus niger and the bacillus subtilis mixing fermentation to produce soybean peptides is that: the initial pH of the culture medium is 8.0, the proportion of mixture strains (aspergillus niger vs bacillus subtilis) is 2 to 1,the fermentation temperature is 30°C and the fermentation time is 80 hours. In this condition the degree of hydrolysis of the fermentation bean pulp is 36.5%.


2021 ◽  
Vol 9 (5) ◽  
pp. 895
Author(s):  
Carlotta Alias ◽  
Daniela Bulgari ◽  
Fabjola Bilo ◽  
Laura Borgese ◽  
Alessandra Gianoncelli ◽  
...  

A low-energy paradigm was adopted for sustainable, affordable, and effective urban waste valorization. Here a new, eco-designed, solid-state fermentation process is presented to obtain some useful bio-products by recycling of different wastes. Urban food waste and scraps from trimmings were used as a substrate for the production of citric acid (CA) by solid state fermentation of Aspergillus niger NRRL 334, with a yield of 20.50 mg of CA per gram of substrate. The acid solution was used to extract metals from waste printed circuit boards (WPCBs), one of the most common electronic waste. The leaching activity of the biological solution is comparable to a commercial CA one. Sn and Fe were the most leached metals (404.09 and 67.99 mg/L, respectively), followed by Ni and Zn (4.55 and 1.92 mg/L) without any pre-treatments as usually performed. Commercial CA extracted Fe more efficiently than the organic one (123.46 vs. 67.99 mg/L); vice versa, biological organic CA recovered Ni better than commercial CA (4.55 vs. 1.54 mg/L). This is the first approach that allows the extraction of metals from WPCBs through CA produced by A. niger directly grown on waste material without any sugar supplement. This “green” process could be an alternative for the recovery of valuable metals such as Fe, Pb, and Ni from electronic waste.


2011 ◽  
Vol 54 (3) ◽  
pp. 559-568 ◽  
Author(s):  
Christiane Trevisan Slivinski ◽  
Alex Vinicius Lopes Machado ◽  
Jorge Iulek ◽  
Ricardo Antônio Ayub ◽  
Mareci Mendes de Almeida

BioResources ◽  
2014 ◽  
Vol 9 (4) ◽  
Author(s):  
Valesca Weingartner Montibeller ◽  
Luciana Porto de Souza Vandenberghe ◽  
Antonella Amore ◽  
Carlos Ricardo Soccol ◽  
Leila Birolo ◽  
...  

2016 ◽  
Vol 29 (1) ◽  
pp. 222-233 ◽  
Author(s):  
TAMIRES CARVALHO DOS SANTOS ◽  
GEORGE ABREU FILHO ◽  
AILA RIANY DE BRITO ◽  
AURELIANO JOSÉ VIEIRA PIRES ◽  
RENATA CRISTINA FERREIRA BONOMO ◽  
...  

ABSTRACT: Prickly palm cactus husk was used as a solid-state fermentation support substrate for the production of cellulolytic enzymes using Aspergillus niger and Rhizopus sp. A Box-Behnken design was used to evaluate the effects of water activity, fermentation time and temperature on endoglucanase and total cellulase production. Response Surface Methodology showed that optimum conditions for endoglucanase production were achieved at after 70.35 h of fermentation at 29.56°C and a water activity of 0.875 for Aspergillus niger and after 68.12 h at 30.41°C for Rhizopus sp. Optimum conditions for total cellulase production were achieved after 74.27 h of fermentation at 31.22°C for Aspergillus niger and after 72.48 h and 27.86°C for Rhizopus sp. Water activity had a significant effect on Aspergillus niger endoglucanase production only. In industrial applications, enzymatic characterization is important for optimizing variables such as temperature and pH. In this study we showed that endoglucanase and total cellulase had a high level of thermostability and pH stability in all the enzymatic extracts. Enzymatic deactivation kinetic experiments indicated that the enzymes remained active after the freezing of the crude extract. Based on the results, bioconversion of cactus is an excellent alternative for the production of thermostable enzymes.


Sign in / Sign up

Export Citation Format

Share Document