copper leaching
Recently Published Documents


TOTAL DOCUMENTS

134
(FIVE YEARS 35)

H-INDEX

18
(FIVE YEARS 5)

2022 ◽  
Vol 301 ◽  
pp. 113895
Author(s):  
Lucas Schröder ◽  
Ferdinand Hellweger ◽  
Anke Putschew

2021 ◽  
Author(s):  
Francesca Cima ◽  
Roberta Varello

Abstract In recent years, after the ban on tributyltin (TBT)-based antifouling paints, copper-based paints have become the main coatings for boat hulls due to their efficiency and endurance. Copper(I) compounds like Cu2O and CuSCN are used alone or in combination with booster biocides, i.e. Irgarol 1051, chlorothalonil and dichlofluanid. The expanded use of these paints has increased copper leaching into coastal environments, requiring attention and legislative restrictions for potential long-term effects on benthic populations. This study monitored the ecological succession of macrofouling communities on wooden and stainless steel panels immersed for 10 months in the southern basin of the Lagoon of Venice. The development of macrofouling communities on the panels coated with copper-containing antifouling paints was compared with those on the reference (uncoated) and TBT-coated panels. Series of biodiversity descriptors highlighted the preventing activity of the antifouling paints. The most active paints were those containing booster biocides and with self-polishing copolymers in the matrix. The macrofouling communities appeared dissimilar to those on the reference uncoated panels as regards the species richness, the coverage areas, and the biocoenosis structure. Generally, green algae, bryozoans and barnacles were the most tolerant taxa and a negative species selection occurred for sponges, serpulids and ascidians.


Metals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1335
Author(s):  
Labone L. Godirilwe ◽  
Kazutoshi Haga ◽  
Batnasan Altansukh ◽  
Yasushi Takasaki ◽  
Daizo Ishiyama ◽  
...  

The flotation tailings obtained from Bor Copper Mine contain pyrite (FeS2) and chalcopyrite (CuFeS2), these sulfide minerals are known to promote acid mine drainage (AMD) which poses a serious threat to the environment and human health. This study focuses on the treatment of mine tailings to convert the AMD supporting minerals to more stable forms, while simultaneously valorizing the mine tailings. A combination of hydrometallurgical processes of high-pressure oxidative leaching (HPOL), solvent extraction (SX), and electrowinning (EW) were utilized to recover copper from mine tailings which contain about 0.3% Cu content. The HPOL process yielded a high copper leaching rate of 94.4% when water was used as a leaching medium. The copper leaching kinetics were promoted by the generation of sulfuric acid due to pyrite oxidation. It was also confirmed that a low iron concentration (1.4 g/L) and a high copper concentration (44.8 g/L) obtained in the stripped solution resulted in an improved copper electrodeposition current efficiency during copper electrowinning. Moreover, pyrite, which is primarily in the mine tailings, was converted into hematite after HPOL. A stability evaluation of the solid residue confirmed almost no elution of metal ions, confirming the reduced environmental loading of mine tailings through re-processing.


2021 ◽  

<p>The regulatory framework of heavy metal pollution associated with electronic waste is prevalent all over the world. As a result of technological advancement and change in consumer patterns, the life span of electrical and electronic products has been shortened. This has contributed to the emergence of massive amounts of electronic waste that needs to be handled. With the exponential growth of the telecommunications sector, the recycling of useful resources from electronic waste devices, especially mobile phones, is of great significance. Besides, the presence of valuable metals enables the recycling of electronic waste potentially appealing. In this research, numerous types of ionic liquids like Butyl methylimidazolium hexafluorophosphate [Bmim][PF6], Butyl methylimidazolium chloride [Bmim][Cl], Ethyl methylimidazolium chloride [Emim][Cl] and Butyl methylimidazolium tetrafluoroborate [Bmim][BF4] were used to analyze the copper leaching behavior of electronic mobile handset devices. Several influential aspects on the leaching efficiency of copper including different types of ionic liquid, temperature and leaching time have been examined. The findings showed [Bmim][PF6] and [Emim][Cl] were better ionic liquids in appropriate conditions for high copper leaching rates.</p>


Metals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 873
Author(s):  
Víctor Quezada ◽  
Antoni Roca ◽  
Oscar Benavente ◽  
Montserrat Cruells ◽  
Evelyn Melo

An option to improve the leaching efficiency of chalcopyrite is pretreatment prior to leaching. Pretreatment variables, such as the curing time and the addition of chloride, can increase the kinetics of copper extraction, particularly for sulphide ores. However, there has been little research on the topic. The reactions that govern this phenomenon have not been clearly identified. In this study, the effects of sulphuric acid and sodium chloride agglomeration and curing on chalcopyrite leaching were evaluated at various temperatures: 25, 50, 70, and 90 °C. The pretreated ore and leach residues were characterised by X-ray diffraction, scanning electron microscopy, and reflected light microscopy. Under the conditions of 15 kg/t of H2SO4, 25 kg/t of NaCl, and 15 days of curing time (as pretreatment), the following products were identified: CuSO4, NaFe3(SO4)2(OH)6, Cu2Cl(OH), and S0. Increasing the curing time and leaching temperature increased copper leaching. The copper extraction was 94% when leaching at 90 °C after pretreatment with 50 g/L of Cl- and 0.2 M of H2SO4. Elemental sulphur, jarosite, and copper polysulphide (CuS2) were detected in the leaching residues.


2021 ◽  
Vol 8 (1) ◽  
pp. 20218109
Author(s):  
L. I. Mukhortova ◽  
O. E. Nasakin ◽  
A. V. Eremkin ◽  
I. V. Glushkov

The parameters of the continuous technological process of leaching copper from fine copper waste using nitric acid as an oxidizer are studied. Optimal conditions for a continuous leaching process were established, in which solutions with a mass concentration of copper ions greater than 25 g/dm3 were obtained.


Minerals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 230
Author(s):  
Pengcheng Ma ◽  
Hongying Yang ◽  
Zuochun Luan ◽  
Qifei Sun ◽  
Auwalu Ali ◽  
...  

Bacteria–mineral contact and noncontact leaching models coexist in the bioleaching process. In the present paper, dialysis bags were used to study the bioleaching process by separating the bacteria from the mineral, and the reasons for chalcopyrite surface passivation were discussed. The results show that the copper leaching efficiency of the bacteria–mineral contact model was higher than that of the bacteria–mineral noncontact model. Scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier-transform infrared (FTIR) were used to discover that the leaching process led to the formation of a sulfur film to inhibit the diffusion of reactive ions. In addition, the deposited jarosite on chalcopyrite surface was crystallized by the hydrolysis of the excess Fe3+ ions. The depositions passivated the chalcopyrite leaching process. The crystallized jarosite in the bacteria EPS layer belonged to bacteria–mineral contact leaching system, while that in the sulfur films belonged to the bacteria–mineral noncontact system.


2021 ◽  

<p>In this research, the selective leaching of copper from waste printed circuit boards (PCBs) using glycine as a complexing agent was investigated. PCBs were pulverized and sieved, which allowed obtaining a PCBs powder of particle size fraction ≤ 1mm. The PCBs powder has been characterized by several techniques before and after leaching. In order to understand the copper extraction process, the reaction mechanisms, and to determine the optimal leaching parameters, the effects of a range of parameters during copper leaching were investigated, including leaching time, solid-to-liquid ratio, mechanical stirring rate, leaching temperature and glycine concentration. Copper leaching from PCBs waste powder was identified as a complex four-stage gas-liquid-solid process that is carried out slowly under ambient conditions. Glycine shows a very significant selectivity for copper during leaching process allowing dissolving copper from PCBs waste with a percentage of 92.8% under ambient conditions.</p>


Sign in / Sign up

Export Citation Format

Share Document