Insight into the Sulfur Metabolism by Thermoacidophilic Archaeon Metallosphaera cuprina with Genomic, Proteomic and Biochemical Tools

2015 ◽  
Vol 1130 ◽  
pp. 145-148 ◽  
Author(s):  
Jin Long Song ◽  
Cheng Ying Jiang ◽  
Shuang Jiang Liu

Abstract. The thermoacidophilic archaeon Metallosphaeracuprina was isolated from a sulfuric hot spring. M. cuprina is able to oxidize elemental sulfur, tetrathionate (S4O62+) pyrite, and a range of low-grade ores, thus is attractive to biomining industry. Dissimilatory sulfur metabolism with a sulfur oxygenase reductase (SOR) system has been reported for members of Sulfolobus and Acidianus. But SOR system was not identified in the genome of M. cuprina. Recently, we have explored the sulfur metabolism of M. cuprina with genomic, proteomic, and biochemical tools. A hypothetical model of sulfur metabolism in M. cuprina was proposed on proteomic and genomic data, and proteins that involved in sulfur metabolism have been identified in our following studies. Specifically, DsrE/TusA homologs were biochemically characterized, and a novel thiosulfate transfer reaction was found during sulfur oxidation with M. cuprina. More recently, we cloned and identified a CoA-dependent NAD(P)H sulfur oxidoreductase from M.cuprina. The study will cover new understandings of the sulfur metabolism with M. cuprina.

2020 ◽  
Vol 8 (3) ◽  
pp. 386 ◽  
Author(s):  
Maxim Muravyov ◽  
Anna Panyushkina

A two-step process, which involved ferric leaching with biologically generated solution and subsequent biooxidation with the microbial community, has been previously proposed for the processing of low-grade zinc sulfide concentrates. In this study, we carried out the process of complete biological oxidation of the product of ferric leaching of the zinc concentrate, which contained 9% of sphalerite, 5% of chalcopyrite, and 29.7% of elemental sulfur. After 21 days of biooxidation at 40 °C, sphalerite and chalcopyrite oxidation reached 99 and 69%, respectively, while the level of elemental sulfur oxidation was 97%. The biooxidation residue could be considered a waste product that is inert under aerobic conditions. The results of this study showed that zinc sulfide concentrate processing using a two-step treatment is efficient and promising. The microbial community, which developed during biooxidation, was dominated by Acidithiobacillus caldus, Leptospirillum ferriphilum, Ferroplasma acidiphilum, Sulfobacillus thermotolerans, S. thermosulfidooxidans, and Cuniculiplasma sp. At the same time, F. acidiphilum and A. caldus played crucial roles in the oxidation of sulfide minerals and elemental sulfur, respectively. The addition of L. ferriphilum to A. caldus during biooxidation of the ferric leach product proved to inhibit elemental sulfur oxidation.


2015 ◽  
Vol 1130 ◽  
pp. 97-100 ◽  
Author(s):  
Jiri Kucera ◽  
Eva Pakostova ◽  
Oldrich Janiczek ◽  
Martin Mandl

Ferric iron may act as a thermodynamically favourable electron acceptor during elemental sulfur oxidation byAcidithiobacillus ferrooxidansin extremely acidic anoxic environments. A loss of anaerobic ferric iron reduction ability has been observed in ferrous iron-grownA. ferrooxidansCCM 4253 after aerobic passaging on elemental sulfur. In this study, iron-oxidising cells aerobically adapted from ferrous iron to elemental sulfur were still able to anaerobically reduce ferric iron, however, following aerobic passage on elemental sulfur it could not. Preliminary quantitative proteomic analysis of whole cell lysates of the passage that lost anaerobic ferric iron-reducing activity resulted in 150 repressed protein spots in comparison with the antecedent culture, which retained the activity. Identification of selected protein spots by tandem mass spectrometry revealed physiologically important proteins including rusticyanin and outer-membrane cytochrome Cyc2, which are involved in iron oxidation. Other proteins were associated with sulfur metabolism such as sulfide-quinone reductase and proteins encoded by the thiosulfate dehydrogenase and heterodisulfide reductase complex operons. Furthermore, proteomic analysis identified proteins directly related to anaerobiosis. The results indicate the importance of iron-oxidising system components for anaerobic sulfur oxidation in the studied microbial strain.


2009 ◽  
Vol 71-73 ◽  
pp. 239-242 ◽  
Author(s):  
Claudia Janosch ◽  
Christian Thyssen ◽  
Mario A. Vera ◽  
Violaine Bonnefoy ◽  
Thore Rohwerder ◽  
...  

The elemental sulfur oxidising enzyme Sulfur Oxygenase Reductase (SOR) is very well investigated in acidothermophilic archaea, such as Acidianus brierleyi and Sulfolobus metallicus. In contrast, not much is known about the biochemistry of elemental sulfur oxidation in acidophilic bacteria. Recently, however, the SOR-encoding gene has been found also in a bacterial strain closely related to the moderate thermophile Acidithiobacillus caldus. Confusingly, for the latter species, also the involvement of the SOX system as well as thiosulfate:quinone oxidoreductase (TQO) and tetrathionate hydrolase (TTH) in sulfur compound oxidation has been proposed based on genome analysis. In this study, we have detected the sor-gene in other Acidithiobacillus caldus-like strains, isolated from various bioleaching habitats, indicating that SOR plays an important role in sulfur oxidation in this species. Based on sequence comparison, the new bacterial sor-genes are closely related and distant from the known archaeal sequences as well as from the SOR found in the neutrophilic bacterium Aquifex aeolicus. In addition, SOR activity has been detected in crude cell extracts from all Acidithiobacillus caldus-like strains tested. The enzyme is truly thermophilic as highest activities were achieved at 65 °C, which is far beyond the growth optimum of Acidithiobacillus caldus. This finding may give rise to the question whether the presence of SOR in Acidithiobacillus caldus is only relevant while growing at elevated temperatures. Currently, experiments are performed for testing this hypothesis (comparing growth and enzyme activities at 30 vs. 45 °C).


Author(s):  
V.K. Berry

There are two strains of bacteria viz. Thiobacillus thiooxidansand Thiobacillus ferrooxidanswidely mentioned to play an important role in the leaching process of low-grade ores. Another strain used in this study is a thermophile and is designated Caldariella .These microorganisms are acidophilic chemosynthetic aerobic autotrophs and are capable of oxidizing many metal sulfides and elemental sulfur to sulfates and Fe2+ to Fe3+. The necessity of physical contact or attachment by bacteria to mineral surfaces during oxidation reaction has not been fairly established so far. Temple and Koehler reported that during oxidation of marcasite T. thiooxidanswere found concentrated on mineral surface. Schaeffer, et al. demonstrated that physical contact or attachment is essential for oxidation of sulfur.


Author(s):  
Pawan Kumar Jayaswal ◽  
Asheesh Shanker ◽  
Nagendra Kumar Singh

Actin and tubulin are cytoskeleton proteins, which are important components of the celland are conserved across species. Despite their crucial significance in cell motility and cell division the distribution and phylogeny of actin and tubulin genes across taxa is poorly understood. Here we used publicly available genomic data of 49 model species of plants, animals, fungi and Protista for further understanding the distribution of these genes among diverse eukaryotic species using rice as reference. The highest numbers of rice actin and tubulin gene homologs were present in plants followed by animals, fungi and Protista species, whereas ten actin and nine tubulin genes were conserved in all 49 species. Phylogenetic analysis of 19 actin and 18 tubulin genes clustered them into four major groups each. One each of the actin and tubulin gene clusters was conserved across eukaryotic species. Species trees based on the conserved actin and tubulin genes showed evolutionary relationship of 49 different taxa clustered into plants, animals, fungi and Protista. This study provides a phylogenetic insight into the evolution of actin and tubulin genes in diverse eukaryotic species.


2008 ◽  
Vol 384 (5) ◽  
pp. 1287-1300 ◽  
Author(s):  
Christiane Dahl ◽  
Andrea Schulte ◽  
Yvonne Stockdreher ◽  
Connie Hong ◽  
Frauke Grimm ◽  
...  

2015 ◽  
Vol 81 (17) ◽  
pp. 5907-5916 ◽  
Author(s):  
Z. J. Jay ◽  
J. P. Beam ◽  
A. Dohnalkova ◽  
R. Lohmayer ◽  
B. Bodle ◽  
...  

ABSTRACTThermoproteales(phylumCrenarchaeota) populations are abundant in high-temperature (>70°C) environments of Yellowstone National Park (YNP) and are important in mediating the biogeochemical cycles of sulfur, arsenic, and carbon. The objectives of this study were to determine the specific physiological attributes of the isolatePyrobaculum yellowstonensisstrain WP30, which was obtained from an elemental sulfur sediment (Joseph's Coat Hot Spring [JCHS], 80°C, pH 6.1, 135 μM As) and relate this organism to geochemical processes occurringin situ. Strain WP30 is a chemoorganoheterotroph and requires elemental sulfur and/or arsenate as an electron acceptor. Growth in the presence of elemental sulfur and arsenate resulted in the formation of thioarsenates and polysulfides. The complete genome of this organism was sequenced (1.99 Mb, 58% G+C content), revealing numerous metabolic pathways for the degradation of carbohydrates, amino acids, and lipids. Multiple dimethyl sulfoxide-molybdopterin (DMSO-MPT) oxidoreductase genes, which are implicated in the reduction of sulfur and arsenic, were identified. Pathways for thede novosynthesis of nearly all required cofactors and metabolites were identified. The comparative genomics ofP. yellowstonensisand the assembled metagenome sequence from JCHS showed that this organism is highly related (∼95% average nucleotide sequence identity) toin situpopulations. The physiological attributes and metabolic capabilities ofP. yellowstonensisprovide an important foundation for developing an understanding of the distribution and function of these populations in YNP.


Sign in / Sign up

Export Citation Format

Share Document