Experiments on Wall Panels with One-Sided Board Sheathing for Timber Structures

2017 ◽  
Vol 1144 ◽  
pp. 3-8
Author(s):  
Jiří Celler ◽  
Jakub Dolejs ◽  
Vera Hlavata

Timber elements with an I-shaped cross-section are used as supporting elements in wall, ceiling and roof panels of light timber frames. The reinforcement of the panel (I-stud) is provided by means of glued timber composite I-shaped element consisting of a web made of a wood-based desk embedded into flanges of solid or glued laminated timber. The stability of the wall panels is usually ensured by sided board sheathing, which prevents buckling of studs in the plane of the wall or their twist. Walls with one-side board sheathing are used for some types of modern timber structures and their load bearing capacity is determined for situation when one-side sheathing burns down during fire or sheathing is not made of a load-bearing material.

2020 ◽  
Vol 2 (61) ◽  
pp. 5-11
Author(s):  
S. Shekhorkina ◽  
◽  
К. Shliakhov ◽  
А. Sopilniak ◽  
◽  
...  

With the transition to the design of timber structures in accordance with European standards, problems arise in assessment of the load-bearing capacity of glued timber structures that are caused by insufficient amount of data about the physical, mechanical and deformation properties of glued timber, which is produced in Ukraine. The aim of the work was to determine the load bearing capacity in bending and deflection of a glued timber beam under the action of a concentrated load in the middle of the span. Two glued laminated timber beams were used in the experiment. Both beams were made using lumber from pine wood and a moisture-curing onecomponent polyurethane adhesive Kleiberit PUR 510 FiberBond. The beams have the dimensions of the cross-section: width of 120 mm and height of 180 mm. The length of the beams was 9880 mm. Each beam consisted of 9 layers of 20 mm thick lamellas glued together. Considering the absence of the data on the strength class of the beam material, the theoretical load bearing capacity and deflection were determined according to the characteristics of the GL24h class (minimum strength class), and amounted to 722 kgf and 19.1 cm, respectively. As a result of the tests, the failure load and the deflection of the beams were determined, and the dependences of the deflection on the load were obtained. The actual deflection of the beams determined was 251 mm and 275 mm, which is 1.31 and 1.44 times higher than the predicted deflection. Accordingly, the failure load determined experimentally is 1.96 and 2.03 times higher than the theoretical value. During the tests, the features of the deformation and the nature of the destruction of the beams were investigated. Wherein, the determining factor was the presence of defects in timber and lamellas joints along the length in the most stressed layers. Based on the data obtained, recommendations on manufacturing aimed at the increasing the bending strength of glued laminated timber beams are given. The results obtained will be further used in the development of structural solutions for hybrid timber-concrete floors.


2009 ◽  
Vol 15 (1) ◽  
pp. 21-33 ◽  
Author(s):  
Artiomas Kuranovas ◽  
Douglas Goode ◽  
Audronis Kazimieras Kvedaras ◽  
Shantong Zhong

This paper represents the analysis of 1303 specimens of CFST experimental data. Test results are compared with EC4 provided method for determining the load‐bearing capacity of these composite elements. Several types of CFSTs were tested: both circular and rectangular cross‐sections with solid and hollow concrete core with axial load applied without and with moment, with sustained load and preloading. For circular cross‐section columns there is a good agreement between the test failure load and the EC4 calculation for both short and long columns with and without moment. For rectangular cross‐section columns the agreement is good except when the concrete cylinder strength was greater than 75 MPa, when many tests failed below the strength predicted by EC4. Preloading the steel tube before filling with concrete seems to have no effect on the strength. This paper also presents the stress distribution, confinement distribution and complete average longitudinal stress‐strain curves for concrete‐filled steel tubular elements. Based on the definition of the “Unified Theory”, the CFST is looked upon as an entity of a new composite material. In this paper, the research achievement of the strength and stability for centrifugal‐hollow and solid concrete filled steel tube are introduced. These behaviours relate to the hollowness ratio and the confining indexes of corresponding solid CFST. If the hollow ratio equals to 0,4–0,5 and over, the N‐ϵ relationship exists in steady descending stage. The critical stress of CFST elements stability is determined as an eccentric member with the initial eccentricity by use of finite element method. Santrauka Straipsnyje analizuojami 1303 betonšerdžių plieninių strypų bandinių eksperimentiniai duomenys. Duomenys lyginami su eurokode 4 pateiktais kompozitinių elementų laikomosios galios nustatymo metodais. Analizuojami šie betonšerdžių plieninių strypų bandinių tipai: pilnaviduriai ir tuščiaviduriai, apskrito ir stačiakampio skerspjūvio kolonos, kurių galuose veikia arba neveikia momentas, su iš anksto pridėta arba ilgalaike apkrova. Apskrito skerspjūvio kolonų laikomosios galios bandymų rezultatai atitinka skaičiavimų reikšmes, apskaičiuotas pagal eurokode 4 pateiktu metodu. Stačiakampio skerspjūvio elementų laikomosios galios reikšmių bandymo rezultatai puikiai atitinka teorines reikšmes, kai betono ritininis stipris nesiekia 75 MPa. Išankstinis elementų apkrovimas poveikio elementų laikomajai galiai beveik neturi. Taip pat nagrinėjami betonšerdžių elementų įtempių būvių pasiskirstymas, betono apspaudimo poveikis ir išilginių deformacijų ir įtempių kreivės. Pateikiama S. T. Zhong „Unifikuota teorija“, kuri nagrinėja kompozitinį elementą kaip visumą. Straipsnyje nagrinėjamos kompozitinio plieninio ir betoninio elemento stiprumo ir pastovumo sąlygos. Tokių elementų reikšmėmis. Jeigu tuštumos santykis lygus 0,4–0,5 ir daugiau, N-ε sąryšis yra kritimo stadijoje. Elgsenos stadijos keičiasi pagal tuštumos koeficientą.


1999 ◽  
Vol 5 (1) ◽  
pp. 73-98 ◽  
Author(s):  
D. Van Gemert ◽  
E.-E. Toumbakari ◽  
L. Schueremans

Abstract Recent developments in injection grouts used for consolidation are proposed. Special compositious have been developed, made out of lime, cement and pozzolan. The stability, the viscosity and the mechanical properties are illustrated. Comparison is made with polymer grouts and with double injections using mineral and polymer grouts consequently. The influence of injections on the load-bearing capacity of the masonry is calculated. Some elements for the judgment of the safety and reliability of masonry structures are pointed out.


2016 ◽  
Vol 6 (2) ◽  
pp. 4-9 ◽  
Author(s):  
Aleksey O. LUKIN ◽  
Vadim Yu. ALPATOV ◽  
Dmitriy D. CHERNYSHEV

The analysis of improving ways to test for load-bearing structures - metal beams with corrugated wall was conducted. Weak places, limiting their load-bearing capacity were determined. It was found that the criterion for determining the carrying capacity of thin-walled corrugated beam is its local resistance. The author's solution to increase the local stability of the corrugated wall beams was suggested. Author's solution is to give the corrugated wall of further extruded profile of different geometry. The influence of the shape and size of punching the wall on the carrying capacity of corrugated beams was determined. The studies confirming the effectiveness of the proposed constructive solutions increase the stability of the corrugated wall are conducted. Preliminary assessment of the degree of increase of the bearing capacity of the beam by punching its wall is obtained.


2013 ◽  
Vol 778 ◽  
pp. 361-368
Author(s):  
Anatoly Yakovlevich Naychuk

The results of experimental and theoretical study of the load-bearing capacity and stiffness of wooden beams with through-thickness cracks depending on their length and location throughout the height of cross-section are given. The analysis of the regularity of change of stress-strain state, stress intensity factors (SIF) and at crack tips, deflections and timber beams load-bearing capacity depending on beam span length versus cross-section height, crack length versus span length, crack location throughout beam height was made. It has been established that load-bearing capacity and stiffness of timber beams with through-thickness cracks depends not only on the crack length, but its location throughout cross-section height as well. Procedure of assessing load-bearing capacity and stiffness of timber beams with through-thickness cracks based on fracture mechanics methods is given.


2019 ◽  
pp. 29-36
Author(s):  
V E Wildemann ◽  
A I Mugatarov

The weakening of the material begins reaching a critical level of stress state, is characterized by a decrease in the level of stress during growing deformations and can develop with an equilibrium accumulation of structural damage. The equilibrium accumulation of damage is possible if the given displacements of the boundary points are provided (that is, with “hard” loading) and if the rigidity of the loading system is sufficient. The design becomes unable to withstand the load only when zones with weakened connections are developed enough. Therefore, taking into account the full deformation diagram in the calculations allows to more accurately determine the load bearing capacity of the design. This paper gives an analytical solution for the problem of a homogeneous cylindrical solid torsion with a circular cross section with its hard loading taking into account the material weakening. Piecewise linear approximations of elastic and elastoplastic medium with a linear weakening at the supercritical deformation stage are considered. The diagrams are plotted regarding stress distribution over the cross section are given; the graphs of the maximum torque value and the extreme value of the relative angle of rotation on the parameters of the deformation diagram. The dependences of the torque on the relative angle of rotation of the sections for the stage of initial supercritical deformation, as well as the stage of supercritical deformation and fracture are determined. The graphs of the dependence of torque on the angle of rotation of the section are given. Reserves of the load bearing capacity of the design are identified. It is noted that taking into account the weakening of the material is expedient in strength calculations and in determination of the system’s safety factor.


Author(s):  
Quoc Phong Tran ◽  

The article presents the results of calculation of the load-bearing capacity of connections of LVL structures under tension using cylindrical dowels in trusses and frames. The description of calculation schemes for determining the load-bearing capacity of connections with different location and sizes of steel plates in the connection is given. The influence of steel plate placement on the distribution of forces in the cross-section of samples is investigated. Based on the results of analytical and experimental studies, the load-bearing capacity of dowels during bending is considered, as well as the mechanism of wooden structures` fracture during chipping. A comparative analysis of the effectiveness of different schemes of dowel connections with three steel plates under tension is carried out.


Materials ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1193 ◽  
Author(s):  
Ieva Misiūnaitė ◽  
Viktor Gribniak ◽  
Arvydas Rimkus ◽  
Ronaldas Jakubovskis

The use of high-strength steel (HSS) is a current trend of the construction industry. Tubular profiles are widely used in various structural applications because of their high stiffness-to-weight ratio, exceptional resistance to torsion, and aesthetic appearance. However, the increase of the strength for the same elastic modulus of the material and geometry of tubular profiles is often not proportional to the rise of the load-bearing capacity of the structural element. The obtained experimental results support the above inference. The study was based on the flexural test results of two groups of HSS and normal-strength steel (NSS) tubular specimens with a 100 × 100 × 4 mm (height × width × thickness) cross-section. Numerical (finite element) simulation results demonstrated that the shape of the cross-section influenced the efficiency of utilisation of HSS. The relationship between the relative increase of the load-bearing capacity of the beam specimen and the corresponding change of the steel strength determined the utilisation efficiency.


Sign in / Sign up

Export Citation Format

Share Document