Skeleton-Based Feature Extraction Method for Two-Dimensional Potential Energy

2010 ◽  
Vol 139-141 ◽  
pp. 2051-2054 ◽  
Author(s):  
Xue Song Chen ◽  
Cheng Wang ◽  
Xue Jun Xu ◽  
Hong Bo Zhu ◽  
Shao Hua Jiang

A good feature extraction method can improve the performance of pattern recognition system or classification system. Using potential energy theory into binary image feature extraction and feature store is a new method for image processing. The skeleton can be better display the whole features of the object. In target recognition system, using potential energy of skeleton-point projection into the plane coordinate system. The method can be better to show a skeleton in the structural feature. In addition, it can better avoid the matrix storage redundancy. In all energy projection method, potential energy projection is better shown its superiority in the structure information, the time of consumption and the storage space. The skeleton potential energy can be used in target recognition and target classification field and so on.


2014 ◽  
Vol 556-562 ◽  
pp. 5042-5045 ◽  
Author(s):  
Wu Li

The technology of 2DPCA is the feature extraction method proposed aiming at two-dimension image based on the traditional PCA algorithm. The paper proposed a improved weighting 2DPCA algorithm, combined with the two-dimension discrete DWT to handle the image, posing the new feature abstraction method, experiment improved that the new feature abstraction method can improve the target recognition efficiently compared with the original 2DPCA algorithm.



Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1885
Author(s):  
Qiong Yao ◽  
Dan Song ◽  
Xiang Xu ◽  
Kun Zou

Finger vein (FV) biometrics is one of the most promising individual recognition traits, which has the capabilities of uniqueness, anti-forgery, and bio-assay, etc. However, due to the restricts of imaging environments, the acquired FV images are easily degraded to low-contrast, blur, as well as serious noise disturbance. Therefore, how to extract more efficient and robust features from these low-quality FV images, remains to be addressed. In this paper, a novel feature extraction method of FV images is presented, which combines curvature and radon-like features (RLF). First, an enhanced vein pattern image is obtained by calculating the mean curvature of each pixel in the original FV image. Then, a specific implementation of RLF is developed and performed on the previously obtained vein pattern image, which can effectively aggregate the dispersed spatial information around the vein structures, thus highlight vein patterns and suppress spurious non-boundary responses and noises. Finally, a smoother vein structure image is obtained for subsequent matching and verification. Compared with the existing curvature-based recognition methods, the proposed method can not only preserve the inherent vein patterns, but also eliminate most of the pseudo vein information, so as to restore more smoothing and genuine vein structure information. In order to assess the performance of our proposed RLF-based method, we conducted comprehensive experiments on three public FV databases and a self-built FV database (which contains 37,080 samples that derived from 1030 individuals). The experimental results denoted that RLF-based feature extraction method can obtain more complete and continuous vein patterns, as well as better recognition accuracy.



Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Jiang Lin ◽  
Yi Yumei ◽  
Zhang Maosheng ◽  
Chen Defeng ◽  
Wang Chao ◽  
...  

In speaker recognition systems, feature extraction is a challenging task under environment noise conditions. To improve the robustness of the feature, we proposed a multiscale chaotic feature for speaker recognition. We use a multiresolution analysis technique to capture more finer information on different speakers in the frequency domain. Then, we extracted the speech chaotic characteristics based on the nonlinear dynamic model, which helps to improve the discrimination of features. Finally, we use a GMM-UBM model to develop a speaker recognition system. Our experimental results verified its good performance. Under clean speech and noise speech conditions, the ERR value of our method is reduced by 13.94% and 26.5% compared with the state-of-the-art method, respectively.





Author(s):  
Wenhang Li ◽  
Yunhong Ji ◽  
Jing Wu ◽  
Jiayou Wang

Purpose The purpose of this paper is to provide a modified welding image feature extraction algorithm for rotating arc narrow gap metal active-gas welding (MAG) welding, which is significant for improving the accuracy and reliability of the welding process. Design/methodology/approach An infrared charge-coupled device (CCD) camera was utilized to obtain the welding image by passive vision. The left/right arc position was used as a triggering signal to capture the image when the arc is approaching left/right sidewall. Comparing with the conventional method, the authors’ sidewall detection method reduces the interference from arc; the median filter removes the welding spatter; and the size of the arc area was verified to reduce the reflection from welding pool. In addition, the frame loss was also considered in the authors’ method. Findings The modified welding image feature extraction method improves the accuracy and reliability of sidewall edge and arc position detection. Practical implications The algorithm can be applied to welding seam tracking and penetration control in rotating or swing arc narrow gap welding. Originality/value The modified welding image feature extraction method is robust to typical interference and, thus, can improve the accuracy and reliability of the detection of sidewall edge and arc position.



Sign in / Sign up

Export Citation Format

Share Document