Research and Design the Primary Two Vehicles Communication System

2010 ◽  
Vol 143-144 ◽  
pp. 328-332
Author(s):  
Jin Dong Zhang ◽  
Zhen Hai Gao

For improve the driving safety and the technology development of inter-vehicle communication, the communication system of supply two vehicles based on GPS, wireless LAN and embedded technology was researched and designed. The system could send/receive driving data information between two vehicles, and display the necessary information on LCD for drivers. In the paper, the process of the system been researched and designed was described. Two applications based on the system were proposed. The system was not only to achieve the desired functionality, but also made foundation for later research. It had great practical value, and very important for technologies research of vehicle safety and intelligent transportation systems.

Author(s):  
إسراء عصام بن موسى ◽  
عبدالسلام صالح الراشدي

Vehicular Ad-hoc Network (VANET) becomes one of the most popular modern technologies these days, due to its contribution to the development and modernization of Intelligent Transportation Systems (ITS). The primary goal of these networks is to provide safety and comfort for drivers and passengers in roads. There are many types of VANET that are used in ITS, in this paper, we particularly focus on the Vehicle to Vehicle communication (V2V), which each vehicle can exchange information to inform drivers of other vehicles about the current state of the road flow, in the event of any emergency to avoid accidents, and reduce congestion on roads. We proposed V2V using Wi-Fi (wireless fidelity); the reason of its unique characteristics that distinguish it from other types. There are many difficulties and the challenges in implementing most types of V2V, and the reason is due to the lack of devices and equipment needed for real implementation. To prove the possibility of applying this type in real life, we made a prototype contains a modified toy car, a 12-volt power supply, sensors, visual, audible alarm, a visual “LED” devices, and finally a 12-volt DC relay unit. As a conclusion, the proposed implementation in spite of minimal requirements and use simple equipment, we have achieved the most important main objectives of the paper: preventing vehicles from collision, early warning, and avoiding congestion on the roads.


2015 ◽  
Vol 2015 ◽  
pp. 1-13
Author(s):  
Yiqi Zhang ◽  
Changxu Wu ◽  
Chunming Qiao ◽  
Adel Sadek ◽  
Kevin F. Hulme

As an important application of Cyber-Physical Systems (CPS), advances in intelligent transportation systems (ITS) improve driving safety by informing drivers of hazards with warnings in advance. The evaluation of the warning effectiveness is an important issue in facilitating communication of ITS. The goal of the present study was to develop a scale to evaluate the warning utility, namely, the effectiveness of a warning in preventing accidents in general. A driving simulator study was conducted to validate the Verbal Warning Utility Scale (VWUS) in a simulated driving environment. The reliability analysis indicated a good split-half reliability for the VWUS with a Spearman-Brown Coefficient of 0.873. The predictive validity of VWUS in measuring the effectiveness of the verbal warnings was verified by the significant prediction of safety benefits indicated by variables, including reduced kinetic energy and collision rate. Compared to conducting experimental studies, this scale provides a simpler way to evaluate overall utility of verbal warnings in communicating associated hazards in intelligent transportation systems. This scale can be further applied to improve the design of warnings of ITS in order to improve transportation safety. The applications of the scale in nonverbal warning situations and limitations of the current scale are also discussed.


2021 ◽  
Author(s):  
Prem Chand Jain

The objective of Intelligent transportation system (ITS) and related National highway traffic safety administration (NHTSA) is to improve vehicle safety and reduce accidents, injuries, and deaths. Advanced driver assistance system (ADAS) is making a difference in vehicle safety. The objective of ADAS is to provide a continuous picture environment surrounding the vehicle. This vision around the vehicle is seen by the driver to take the decision. Vehicular communication is a part of Intelligent Transport System which provides an intelligent way of transport to avoid accidents. As the transportation moves towards environment of connected and autonomous vehicles, the role of communication and data transfer becomes important. Connected vehicles can be used for both infotainment and navigation for vehicle safety. Vehicle-to-vehicle (V2V) communication allows vehicles to talk to each other and exchange data about location, direction of travel, speed, brake, accelerator status, and other facts. This information is analyzed and used to avoid collision. C-V2X (Cellular-Vehicle-to-Everything) can provide better quality of service support, large coverage, and high data rate for moving vehicles. Device-to-device (D2D) communication in C-V2X provides high reliability and low latency. In 5G Rel.16 C-V2X will become an integral part of 5G cellular network providing higher capacity, coverage, etc. Today old aged/disabled person look for driving technology that is convenient and easy to use. V2X technology will offset some of the concerns about old aged/disabled driver’s abilities to respond quickly to challenge by driving environment as they no longer be required to handle most of the decisions.


2020 ◽  
Vol 19 (11) ◽  
pp. 2116-2135
Author(s):  
G.V. Savin

Subject. The article considers functioning and development of process flows of transportation and logistics system of a smart city. Objectives. The study identifies factors and dependencies of the quality of human life on the organization and management of stream processes. Methods. I perform a comparative analysis of previous studies, taking into account the uniquely designed results, and the econometric analysis. Results. The study builds multiple regression models that are associated with stream processes, highlights interdependent indicators of temporary traffic and pollution that affect the indicator of life quality. However, the identified congestion indicator enables to predict the time spent in traffic jams per year for all participants of stream processes. Conclusions. The introduction of modern intelligent transportation systems as a component of the transportation and logistics system of a smart city does not fully solve the problems of congestion in cities at the current rate of urbanization and motorization. A viable solution is to develop cooperative and autonomous intelligent transportation systems based on the logistics approach. This will ensure control over congestion, the reduction of which will contribute to improving the life quality of people in urban areas.


Sign in / Sign up

Export Citation Format

Share Document