Research on Design and Pavement Performance of TLA Modified Asphalt Mixture

2010 ◽  
Vol 146-147 ◽  
pp. 217-220 ◽  
Author(s):  
Xin Jun Feng ◽  
Xu Dong Zha ◽  
Pei Wen Hao

Marshall test design methods are used to design TLA modified asphalt mixture and base asphalt mixture respectively, and their pavement performance is tested. The results showed that there is a transforming coefficient of 1.15 between OAC of TLA modified asphalt mixture and that of base asphalt mixture, and ultimate gradation of the TLA modified asphalt mixture is finer than previous gradation. TLA modified asphalt mixture has excellent high temperature stability, capacity of moisture-resistance damage and impermeability. So it can be applied to asphalt pavements engineering of expressway in China.

2014 ◽  
Vol 941-944 ◽  
pp. 324-328 ◽  
Author(s):  
Zhong Ping Yao ◽  
Meng Li ◽  
Wei Liu ◽  
Zhen Bei Chen ◽  
Rong Hui Zhang

Use polyurethane rubber composite modified asphalt.Through the Marshall test and rutting test, test of polyurethane rubber asphalt mixture high temperature stability, low temperature crack resistance and water damage resistance, verify the composite modification advantages.


2014 ◽  
Vol 919-921 ◽  
pp. 1079-1084 ◽  
Author(s):  
Sen Han ◽  
Dong Yu Niu ◽  
Ya Min Liu ◽  
De Chen ◽  
Deng Wu Liu

The types and contents of styrene-butadiene-styrene (SBS) modifier are two important factors of SBS modified asphalt mixtures. Nowadays, SBS are extensively utilized to modified asphalt in order to improve the performance of the flexible pavement. The objective of this study is to determine a best selection of types and contents of SBS modifier, which can improve high-temperature stability; low-temperature anti-cracking performance and moisture susceptibility of SBS modified asphalt mixture. The mixtures with four types of SBS (Linear A, Linear B, Star A, Star B) and the different contents of each type SBS including Linear SBS of 0%, 3%, 4%, 4.5% and Star SBS of 0%, 3%, 3.5%, 4%, were evaluated for the pavement performance of them under laboratory conditions. Wheel tracking test, beam bending test and freeze-thaw tensile strength test were chosen and carried out to determine high-temperature stability, low-temperature anti-cracking performance and the moisture susceptibility respectively. The laboratory testing results indicate that Star SBS show the more effective effects than Linear SBS to improve the high-temperature stability, low-temperature anti-cracking performance and moisture susceptibility of SBS modified asphalt mixture, and the optimum content of SBS can also play a key role the improvement of the pavement performance.


2011 ◽  
Vol 194-196 ◽  
pp. 1069-1072
Author(s):  
Xin Jun Feng ◽  
Xu Dong Zha

Marshall test design methods are used to design TLA modified asphalt mixture and base asphalt mixture respectively, and their pavement performance is tested. The results showed that there is a transforming coefficient of 1.10 between optimum asphalt content (OAC) of 25% TLA modified asphalt mixture and that of base asphalt mixture, and TLA modified asphalt mixture has excellent high temperature stability, capacity of moisture-resistance damage and impermeability. Construction technology of TLA modified asphalt mixture is similar to that of ordinary asphalt mixture, but the key for it is to control construction temperature, uniformity and compactness of TLA modified mixture.


2011 ◽  
Vol 266 ◽  
pp. 175-179 ◽  
Author(s):  
Yuan Xun Zheng ◽  
Ying Chun Cai ◽  
Ya Min Zhang

In order to discuss the effect of the basalt fiber on reinforcing pavement performance of asphalt mixtures, the optimum dosage of asphalt and fibers were studied by the method of Marshall test and rut test firstly. Then pavement performances of basalt fiber-modified asphalt mixtures were investigated through tests of high temperature stability, water stability and low temperature crack resistance, and compared with that of polyester fiber, xylogen fiber and control mixture. The testing results showed that the pavement performance of fiber-modified asphalt mixture are improved and optimized comparing with control asphalt mixture, and the performance of basalt fiber-modified asphalt mixture with best composition were excelled than those of polyester fiber and xylogen fiber.


2019 ◽  
Vol 136 ◽  
pp. 03010
Author(s):  
Ma Qingna ◽  
Zhao Zhiqin ◽  
Xu Qian ◽  
Sun Feng

Adding sulphur dilution asphalt modifier SEAM to asphalt mixture is not only a modifier of asphalt mixture, but also an additive of asphalt mixture. When the modifier is added into the asphalt mixture, the road performance of the asphalt mixture can be improved. This paper studies SEAM modified asphalt mixture the Marshall property index, temperature stability, Water stability and fatigue feature in the Laboratory. On the based of the result of the experiment and analysis, SEAM can improve the high temperature stability, Water stability and fatigue feature. But the low temperature stability can’t improve.


2014 ◽  
Vol 638-640 ◽  
pp. 1166-1170 ◽  
Author(s):  
Meng Hui Hao ◽  
Pei Wen Hao

Natural mineral fiber with good performances of mechanical properties and environmentally friendly, pollution-free especially have gradually aroused extensive concern. In order to improve the quality of asphalt pavement, explore the applicability of nature basalt fiber in enhanced asphalt mixture performance, this paper investigates two typical asphalt mixtures and contrastive studies pavement performance of asphalt mixture by high temperature stability, water stability, low temperature anti-cracking and fatigue performance between basalt fiber modified asphalt mixture and base asphalt mixture, and then study the basic principle of fiber reinforcing asphalt mixture. The research show that basalt fiber modified asphalt mixture has a better pavement performance than base asphalt mixture, its dynamic stability is 1.6 times than base asphalt mixture, low temperature anti-cracking performance increased by more 25% and fatigue life is more 2 times than base asphalt mixture. And the basalt fiber can be used in the road engineering as an additive material that enhances the comprehensive performance of asphalt pavement.


2012 ◽  
Vol 253-255 ◽  
pp. 607-610
Author(s):  
Yu Qing Yuan ◽  
Wei Li ◽  
Xue Chan Li ◽  
Tao Guo

To study the asphalt pavement performances on high temperature or its water stabilities, a series of tests, including high temperature stability test, immersion Marshall test, freeze-thaw splitting test, were finished. According to bailey method, initial quasi grading were calculated. Passing rate of 2.36 mm is respectively 36.3%, 33.1%, 36.1%, 38.7%, which is close to the initial quasi grading, namely 36%, 31.5%, 36%, 40%. Respectively at the test temperature of 60 °C, 68 °C, rutting tests were put forward. The results show that the mixture of gradation one has a higher temperature stability than the others in any case. Marshall immersion test and freeze-thaw test were conducted, optimizing with freeze-thaw splitting intensity ratio, which shows that the mixture of gradation one has a better water stability. To sum up, gradation one is recommended, designed by Marshall compaction molding with times of 100.


2013 ◽  
Vol 361-363 ◽  
pp. 1655-1658
Author(s):  
Xiao Li Li ◽  
Qing Zhou Wang ◽  
Shu Yan Liu

Because of the heating limitation of old pavement and the restriction of climate, the quality of hot in-place recycled pavement was different to control. The warm m,ix asphalt technology was introduced to improve the heterogeneity and compactness of the hot in-place recycled pavement and decrease its construction temperature. The compaction characteristics of warm in-place recycled asphalt mixture were analyzed and its molding temperature was determined through the Marshall test. The pavement performance of warm in-place recycled asphalt mixture was analyzed whose results indicated that the introduction of warm mix asphalt technology was able to improve the compactness, the high temperature stability and water stability of hot in-place recycled asphalt mixture and reduce the influence of environment over its construction quality. A warm in-place recycled engineering of Shian expressway was introduced to verify the feasibility of warm in-place recycling technology which demonstrated that the warm in-place recycling technology was able to improve the heterogeneity and compaction quality of the recycled pavement and weaken the environmental pollution.


2012 ◽  
Vol 204-208 ◽  
pp. 4143-4146
Author(s):  
Zhong Guo He ◽  
Xin De Tang ◽  
Wen Jun Yin ◽  
Yi Fan Sun ◽  
Zhong Bo Liu

Montmorillonite/SBS composite modifed asphalts were prepared by mixing montmorillonite with SBS-modified asphalt, further the corresponding asphalt mixtures were obtained. The paving technical indexes of the mixture such as physical properties, moisture suscepyibility, and high temperature stability were tested, and compared with that of the corresponding SBS-modifed asphalt mixture and base asphalt mixture. The results demonstrate that the montmorillonite/SBS composite modifed asphalt mixture exhibites enhanced stability, improved flow value and moisture susceptibility, and increased high temperature stability.


2015 ◽  
Vol 744-746 ◽  
pp. 1316-1319
Author(s):  
Yi Wang ◽  
Wei Li

In order to deeply reveal the high temperature stability of asphalt mixture, rutting test was implemented to evaluate the high temperature stability of asphalt mixture, and the evaluation index is dynamic stability. The effect of asphalt type, degree of compaction, gradation type and nominal maximum aggregate size on rutting test results was studied respectively. The results showed that: modified asphalt can improve the high temperature stability of asphalt mixture effectively; the anti-rutting performance of asphalt mixture reduces gradually with decrease of the degree of compaction; the anti-rutting performance of SAC-16 is greater than that of AC-16; and the anti-rutting performance of asphalt mixture is improved with increase of the nominal size of aggregate.


Sign in / Sign up

Export Citation Format

Share Document