Flame Retardant Composites of Rare Earth Oxides/ Conventional Flame Retardants/ Silicone Rubber with Good Self-Extinguishing

2010 ◽  
Vol 152-153 ◽  
pp. 108-115 ◽  
Author(s):  
Fei Juan Xu ◽  
Zu Min Qiu

In this paper, the flame-retardant synergistic effect between rare earth oxide and conventional flame retardants (aluminum hydroxide and iron trioxide) has been studied using vertical combustion test. The results show that good flame-retardant synergistic effect exists between them. The composites combining 100 grams of aluminum hydroxide, 40 grams of iron trioxide and 0.8 grams of rare earth oxide can reach FV-0 in vertical combustion test. The thermal stability influence of rare earth oxide to silicone rubber has also been studied by means of thermogravimetric analysis. It has been found that rare earth oxide can function as thermal stabilizer in silicone rubber.

2014 ◽  
Vol 1033-1034 ◽  
pp. 931-936
Author(s):  
Cong Yan Chen ◽  
Rui Lan Fan ◽  
Guan Qun Yun

A novel intumescent flame retardant (IFR) containing ferrocene and caged bicyclic phosphate groups, 1-oxo-4-[4'-(ferrocene carboxylic acid phenyl ester)] amide-2, 6, 7-trioxa-1-phosphabicyclo- [2.2.2] octane (PFAM), was successfully synthesized. The synthesized PFAM were added to flammable polyurethane (PU) as flame retardants and smoke suppressants. The structure of PFAM was characterized by Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance (1H NMR) and elemental analysis. Thermal stability of PFAM was tested by themogravimetric analysis (TGA). The results revealed that PFAM had good thermal stability and high char weight, the char weight up to 54% at 600 °C. Flammability properties of PU/PFAM composites were investigated by limiting oxygen index (LOI) test and UL-94 test, respectively. The results of LOI tests showed that the addition of PFAM enhanced flame retardancy of PU. When the content of PFAM reaches to 3%, the LOI value is 22.2. The morphologies of the char for PU and PU/3% PFAM composite can be obtained after LOI testing were examined by SEM. The results demonstrated that PFAM could promote to form the compact and dense intumescent char layer. Experiments showed that, the PFAM application of polyurethane showed positive effect.


Materials ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1251
Author(s):  
Yilin Liu ◽  
Bin Li ◽  
Miaojun Xu ◽  
Lili Wang

Ethylene vinyl acetate (EVA) copolymer has been used extensively in many fields. However, EVA is flammable and releases CO gas during burning. In this work, a composite flame retardant with ammonium polyphosphate (APP), a charring–foaming agent (CFA), and a layered double hydroxide (LDH) containing rare-earth elements (REEs) was obtained and used to improve the flame retardancy, thermal stability, and smoke suppression for an EVA matrix. The thermal analysis showed that the maximum thermal degradation temperature of all composites increased by more than 37 °C compared with that of pure EVA. S-LaMgAl/APP/CFA/EVA, S-CeMgAl/APP/CFA/EVA, and S-NdMgAl/APP/CFA/EVA could achieve self-extinguishing behavior according to the UL-94 tests (V-0 rating). The peak heat release rate (pk-HRR) indicated that all LDHs containing REEs obviously reduced the fire strength in comparison with S-MgAl. In particular, pk-HRR of S-LaMgAl/APP/CFA/EVA, S-CeMgAl/APP/CFA/EVA and S-NdMgAl/APP/CFA/EVA were all decreased by more than 82% in comparison with pure EVA. Furthermore, the total heat release (THR), smoke production rate (SPR), and production rate of CO (COP) also decreased significantly. The average mass loss rate (AMLR) confirmed that the flame retardant exerted an effect in the condensed phase of the composites. Meanwhile, the combination of APP, CFA, and LDH containing REEs allowed the EVA matrix to maintain good mechanical properties.


2021 ◽  
Vol 8 ◽  
Author(s):  
Chuanhua Gao ◽  
Siqi Huo ◽  
Zhenhu Cao

It has been significant yet challenging to recycle and reuse different kinds of wastes because of their mass production within society. Many efforts have been conducted to reuse wastes in different fields. Interestingly, some wastes have been employed to replace traditional petroleum-based flame retardants for polymeric materials. This review focuses on the recent development of waste flame retardants and their impacts on thermal stability, flame retardancy, and smoke suppression of polymers, followed by representative flame-retardant mechanisms. Finally, the key challenges associated with waste flame retardants are presented, and some future perspectives are proposed.


Sign in / Sign up

Export Citation Format

Share Document