Catalytic Reforming of Model Tar Compounds from Hot Coke Oven Gas for Light Fuel Gases Production over Bimetallic Catalysts

2010 ◽  
Vol 152-153 ◽  
pp. 860-863 ◽  
Author(s):  
Hong Wei Cheng ◽  
Xiong Gang Lu ◽  
Da Hai Hu ◽  
Wei Zhong Ding

The catalytic reforming of toluene was performed to investigate the possibility for directly converting tar components from hot coke oven gas (COG) with lower steam/carbon (S/C) molar ratio to light fuel gases. The Ni0.25Me0.25/Mg2.5(Al)O (Me=Fe, Cu, Zn, Mn) bimetallic catalysts derived from hydrotalcite showed excellent catalytic activity. The effects of various reaction conditions on the catalytic performance were investigated in detail. Toluene could be completely converted into small gas molecules of CH4, CO and CO2 over the catalyst at S/C=0.7 and 650-750 oC under atmospheric pressure. Lower reaction temperature and higher H2 content in feed gas both could promote the formation of CH4, while higher S/C molar ratio benefited the CO yield.

2011 ◽  
Vol 197-198 ◽  
pp. 711-714 ◽  
Author(s):  
Hong Wei Cheng ◽  
Xiong Gang Lu ◽  
Wei Zhong Ding ◽  
Qing Dong Zhong

Pd (0.1-1 wt%) loaded Ni/Mg(Al)O catalysts have been prepared by co-precipitation and impregnation methods, and their catalytic activities were tested in the catalytic reforming of tar components from hot coke oven gas (COG) with lower steam/carbon (S/C) molar ratio. The 0.5%Pd-12%Ni/Mg3(Al)O bimetallic catalyst derived from hydrotalcite showed excellent catalytic activity. The effect of reaction temperature on the catalytic performance was investigated in detail. Toluene could be completely converted into small gas molecules of CH4, CO and CO2 over the catalyst at S/C=0.42 and 600°C under atmospheric pressure.


2013 ◽  
Vol 394 ◽  
pp. 270-273 ◽  
Author(s):  
Wei Tao ◽  
Hong Wei Cheng ◽  
Qiu Hua Zhu ◽  
Xiong Gang Lu ◽  
Wei Zhong Ding

The CO2 reforming of coke oven gas (COG) for hydrogen production was investigated over mesoporous NiO/La2O3-ZrO2 catalysts. At optimized reaction conditions, the conversions of CH4 and CO2 more than 93%, while a H2 selectivity of 94.7% and a CO selectivity of 98.6% have been achieved at 800 °C. The effect of reaction temperature on the catalytic performance was investigated in detail. The catalysts with appropriate La2O3 content showed better catalytic activity and resistance to coking, which will be promising catalysts in the catalytic dry reforming of COG.


2010 ◽  
Vol 152-153 ◽  
pp. 817-820 ◽  
Author(s):  
Hong Wei Cheng ◽  
Xiong Gang Lu ◽  
Wei Zhong Ding

The steam reforming of simulated coke oven gas (COG) with toluene as a model tar compound for syngas production was investigated over Ni/Al2O3-MgO catalysts. XRD results showed that the catalysts with high calcination temperature and Al2O3 content after calcination formed (Ni,Mg)Al2O4 spinel and Ni-Mg-O solid solution structure. At optimized reaction conditions, toluene and CH4 can be completely converted, while a H2 yield of 71.8% and a CO yield of 76.1% have been achieved at 800 oC. The catalysts with appropriate calcination temperature and Al2O3 content showed better catalytic activity and resistance to coking, which will be promising catalysts in the catalytic reforming of COG.


2010 ◽  
Vol 132 ◽  
pp. 228-235 ◽  
Author(s):  
Xu Li ◽  
Guan Zhong Lu ◽  
Yang Long Guo ◽  
Yun Guo ◽  
Yan Qin Wang

A novel solid superbase catalyst of La2O3-ZnO/ZrO2 was prepared, and its H– value (Hammett function) of surface basic strength reaches 26.5. The catalytic activity of La2O3-ZnO/ZrO2 was evaluated for the transesterification of soybean oil (SBO) with methanol to biodiesel in a fixed bed reactor under atmospheric pressure. The results show that the chemical composition of the La2O3-ZnO/ZrO2 catalyst influences both its H– value and catalytic performance, the appropriate content of ZrO2 is 60 wt.% and the La2O3/ZnO molar ratio is 4~5/1. La2O3-ZnO/ZrO2 is an effective catalyst for the transesterification of SBO, and the SBO conversion reaches 71.3% at 70°C for 12h.


2019 ◽  
Vol 6 (8) ◽  
pp. 190166
Author(s):  
Ran Liu ◽  
Ke Zhang ◽  
Chen Liu ◽  
Yanhui Hu ◽  
Lilong Zhou ◽  
...  

Four kinds of functional ionic liquids (ILs) ([C 3 SO 3 Hnmp]HSO 4 ), 1-(3-sulfopropyl)-1-methylpyrrolidone phosphate ([C 3 SO 3 Hnmp]H 2 PO 4 ), 1-(3-sulfopropyl)-1-methylpyrrolidone p-toluene sulfonate ([C 3 SO 3 Hnmp]CH 3 SO 3 H) and 1-(3-sulfopropyl)-1-methylpyrrolidone methyl sulfonate ([C 3 SO 3 Hnmp]C 6 H 6 SO 3 H)) were prepared and the catalytic activity of these ILs during esterification of carboxylic acids (formic acid, acetic acid, propionic acid, butyric acid) with alcohols was investigated. The results indicated that the IL ([C 3 SO 3 Hnmp]HSO 4 ) exhibited an optimal catalytic performance. And then the IL ([C 3 SO 3 Hnmp]HSO 4 ) was immobilized to the silica gel. The immobilized IL performed more excellent catalytic activity than the unsupported [C 3 SO 3 Hnmp]HSO 4 . The effects of reaction temperature, reaction time, molar ratio of acid to alcohol and catalyst dosage were investigated. The response surface methodology based on the Box–Behnken design (BBD) was used to explore the best reaction condition of different experimental variables. Accordingly, a high n -butyl butyrate yield of 97.10% under the deduced optimal reaction conditions was obtained, in good agreement with experimental results and that predicted by the BBD model. The immobilized IL [C 3 SO 3 Hnmp]HSO 4 maintained high catalytic activity after five cycles.


Author(s):  
SUNNY SONI ◽  
MADHU AGARWAL

Biodiesel is a renewable liquid fuel made from natural, renewable biological sources such as edible and non edible oils. Over the last years, biodiesel has gained more market due to its benefits and because it appears as the natural substitute for diesel. Reasons for growing interest in biodiesel include its potential for reducing noxious emissions, potential contributions to rural economic development, as an additional demand center for agricultural commodities, and as a way to reduce reliance on foreign oil. Biodiesel was prepared from soybean oil by transesterification with methanol in the presence of cement clinker. Cement clinker was examined as a catalyst for a conversion of soybean oil to fatty acid methyl esters (FAMEs). It can be a promising heterogeneous catalyst for the production of biodiesel fuels from soybean oil because of high activity in the conversion and no leaching in the transesterification reaction. The reaction conditions were optimized. A study for optimizing the reaction parameters such as the reaction temperature, and reaction time, was carried out. The catalyst cement clinker composition was characterized by XRF. The results demonstrate that the cement clinker shows high catalytic performance & it was found that the yield of biodiesel can reach as high as 84.52% after 1 h reaction at 65°C, with a 6:1 molar ratio of methanol to oil, 21 wt% KOH/cement clinker as catalyst.


2021 ◽  
Vol 1016 ◽  
pp. 1417-1422
Author(s):  
Chao Sun ◽  
Jugoslav Krstic ◽  
Vojkan Radonjic ◽  
Miroslav Stankovic ◽  
Patrick da Costa

This study is aimed to investigate the effect of Ni precursor salts on the properties (textural, phase-structural, reducibility, and basicity), and catalytic performance of diatomite supported Ni-Mg catalyst in methanation of CO2. The NiMg/D-X catalysts derived from various nickel salts (X = S-sulfamate, N-nitrate or A-acetate) were synthesized by the precipitation-deposition (PD) method. The catalysts were characterized by N2-physisorption, XRD, TPR-H2, and TPD-CO2 techniques. The different catalytic activity (conversion) and selectivity, observed in CO2 methanation carried out under relatively mild conditions (atmospheric pressure; temperatures: 250-450 °C) are related and explained by the difference in textural properties, metallic Ni-crystallite size, reducibility, and basicity of studied catalysts. The results showed that catalyst derived from Ni-nitrate salt (NiMg/D-N) is more suitable for the preparation of efficient catalyst for CO2 methanation than its counterparts derived from sulfamate (NiMg/D-S) or acetate (NiMg/D-A) nickel salt. The NiMg/D-N catalyst showed the highest specific surface area and total basicity, and the best catalytic performance with CO2 conversion of 63.3 % and CH4 selectivity of 80.9 % at 450 °C.


2011 ◽  
Vol 396-398 ◽  
pp. 1283-1286
Author(s):  
Jian Peng Zhu ◽  
Chun Hu Li ◽  
Jia Ling Chen ◽  
Ying Wei Luo

Abstract. Investigation of polymer resin as catalyst in the oxidative desulfurization (ODS) process has revealed that the method can be applied to make a relative high removal of sulfur compounds. The reaction conditions, including temperature, amount of oxidant and reaction time were studied. The best result occurs under mild conditions with respect to room temperature and atmospheric pressure, to remove 75.54% of the totle sulfur content in the presence of H2O2 with an O/S molar ratio of 17. Possible mechanism is also disscussed.


2019 ◽  
Vol 12 (01) ◽  
pp. 1850092 ◽  
Author(s):  
Huoshi Cen ◽  
Zhaodong Nan

Zn-doped Fe3O4 has been employed as a catalyst for the photo-Fenton process. At the present study, the influence of Zn content in the Zn-doped Fe3O4 on the catalytic activity for the photo-Fenton process was studied. Monodispersed ZnxFe[Formula: see text]O4 particles were facilely synthesized with higher surface area and several nm of diameter, where [Formula: see text], 0.4 and 1.0. Rhodamine B (Rh B), as one of the positive dyes, was selected as a model pollutant. The decolorization efficiency of the Fe3O4 ([Formula: see text]) for Rh B reached about 90% in 120[Formula: see text]min under visible light. The Zn content increase in the Zn-doped Fe3O4 inhibited the Fenton process. The higher molar ratio of Fe[Formula: see text] to Fe[Formula: see text], smaller band-gap, and more negative zeta potential of the Fe3O4 induced the most excellent photo-Fenton performance for the Rh B degradation.


Energies ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5506
Author(s):  
Daniel Carreira Batalha ◽  
Márcio José da Silva

Nowadays, the synthesis of biofuels from renewable raw materials is very popular. Among the various challenges involved in improving these processes, environmentally benign catalysts compatible with an inexpensive feedstock have become more important. Herein, we report the recent advances achieved in the development of Niobium-containing heterogeneous catalysts as well as their use in routes to produce biodiesel. The efficiency of different Niobium catalysts in esterification and transesterification reactions of lipids and oleaginous raw materials was evaluated, considering the effect of main reaction parameters such as temperature, time, catalyst load, and oil:alcohol molar ratio on the biodiesel yield. The catalytic performance of Niobium compounds was discussed considering the characterization data obtained by different techniques, including NH3-TPD, BET, and Pyr-FT-IR analysis. The high catalytic activity is attributed to its inherent properties, such as the active sites distribution over a high specific surface area, strength of acidity, nature, amount of acidic sites, and inherent mesoporosity. On top of this, recycling experiments have proven that most Niobium catalysts are stable and can be repeatedly used with consistent catalytic activity.


Sign in / Sign up

Export Citation Format

Share Document