Warm Stamping of Cell-Phone Cases with AZ31 Magnesium-Alloy Sheets

2010 ◽  
Vol 154-155 ◽  
pp. 1826-1829 ◽  
Author(s):  
Fuh Kuo Chen ◽  
Chih Kun Chang

The stamping process for manufacturing cell phone cases with magnesium alloy AZ31 sheets was studied using both the experimental approach and the finite element analysis. The formability of AZ31 magnesium-alloy sheet at elevated temperatures was studied first. The experimental results reveal that the forming of AZ31 sheets becomes possible as long as the sheet is heated to an elevated temperature and 200oC is an optimum forming temperature to start with. An optimum stamping process, including die geometry, forming temperature, and blank dimension, for manufacturing the cell phone cases was examined by the finite element analysis. The finite element analyses performed for the cell phone were validated by the good agreement between the simulation results and the experimental data. It also confirms that the cell phone cases can be produced with AZ31 magnesium-alloy sheets at elevated temperature by the stamping process. It provides an alternative to the electronics industry in the application of magnesium alloys.

2012 ◽  
Vol 268-270 ◽  
pp. 3-6
Author(s):  
Tao Huang ◽  
Yi Yan Zhang

A numerical investigation was conducted to determine the mechanical behavior of C/SiC composites bolt under room temperature and elevated temperature. The influence of the contact friction coefficient on the stress and displacement was considered in the finite element analysis. The FEA results provided some valuable data for the engineering application of C/SiC composites bolt.


Author(s):  
Yuya Omiya ◽  
Tadatoshi Watanabe ◽  
Masahiro Fujii ◽  
Haruka Yamamoto

In this study, the creep deformation in the threaded joint are discussed using a finite element method, and evaluated the influence of the dimensions of bolt and clamped parts. The stress and creep strain distributions are calculated using the Finite Element Analysis. The occurrence and the propagation of the creep deformation and influence of the creep deformation on the axial bolt force were discussed. It was found that the creep deformation occurred at the bearing surfaces and the engagement screw thread mainly at the elevated temperature. The creep deformation was a cause of the reduction in axial bolt force.


2011 ◽  
Vol 66-68 ◽  
pp. 76-81
Author(s):  
Gao Shan Ma ◽  
Han Ying Wang ◽  
Song Yang Zhang ◽  
Min Wan

The cylindrical cup drawing of 5A90 Aluminum-Lithium alloy sheets at various forming conditions was studied by both the experimental approach and the finite element analysis. The uniaxial tensile tests and forming limit tests of 5A90 Al-Li alloy sheets at various temperatures were first carried out. The tests results were then employed in the finite element simulations to investigate the effects of process parameters, such as forming temperature, holder force, and die corner radius, on the formability of cylindrical cup drawing with 5A90 sheets. In order to validate the finite element analysis, the corresponding deep drawing tests were also carried out. It is shown that the simulation results are in qualitative agreement with the experimental observations. The optimal forming temperature, diameter of blank, holder force, punch radius and die corner radius were then determined for the cylindrical cup drawing of 5A90 sheets, and the limit drawing ratio (LDR) reached 2.4 in the optimal parameter conditions.


Author(s):  
Dewang Zhao ◽  
Daxin Ren ◽  
Kunmin Zhao ◽  
Pan Sun ◽  
Xinglin Guo ◽  
...  

AbstractUltrasonic welding is an effective ways to achieve a non-reactive/immiscible heterogeneous metal connection, such as the connection of magnesium alloy and titanium alloy. But the thermal mechanism of magnesium alloy/titanium alloy ultrasonic welding has not been defined clearly. In this paper, the experimental and the finite element analysis were adopted to study the thermal mechanism during welding. Through the test, the temperature variation law during the welding process is obtained, and the accuracy of the finite element model is verified. The microscopic analysis indicates that at the welding time of 0.5 s, the magnesium alloy in the center of the solder joint is partially melted and generates the liquid phase. Through the finite element analysis, the friction coefficient of the magnesium–titanium ultrasonic welding interface can be considered as an average constant value of 0.28. The maximum temperature at the interface can exceed 600 °C to reach the melting point temperature of the magnesium alloy. The plastic deformation begins after 0.35 s and occurs at the magnesium side at the center of the interface.


1985 ◽  
Vol 13 (3) ◽  
pp. 127-146 ◽  
Author(s):  
R. Prabhakaran

Abstract The finite element method, which is a numerical discretization technique for obtaining approximate solutions to complex physical problems, is accepted in many industries as the primary tool for structural analysis. Computer graphics is an essential ingredient of the finite element analysis process. The use of interactive graphics techniques for analysis of tires is discussed in this presentation. The features and capabilities of the program used for pre- and post-processing for finite element analysis at GenCorp are included.


2007 ◽  
Vol 35 (3) ◽  
pp. 226-238 ◽  
Author(s):  
K. M. Jeong ◽  
K. W. Kim ◽  
H. G. Beom ◽  
J. U. Park

Abstract The effects of variations in stiffness and geometry on the nonuniformity of tires are investigated by using the finite element analysis. In order to evaluate tire uniformity, a three-dimensional finite element model of the tire with imperfections is developed. This paper considers how imperfections, such as variations in stiffness or geometry and run-out, contribute to detrimental effects on tire nonuniformity. It is found that the radial force variation of a tire with imperfections depends strongly on the geometrical variations of the tire.


2018 ◽  
Vol 55 (4) ◽  
pp. 666-675
Author(s):  
Mihaela Tanase ◽  
Dan Florin Nitoi ◽  
Marina Melescanu Imre ◽  
Dorin Ionescu ◽  
Laura Raducu ◽  
...  

The purpose of this study was to determinate , using the Finite Element Analysis Method, the mechanical stress in a solid body , temporary molar restored with the self-curing GC material. The originality of our study consisted in using an accurate structural model and applying a concentrated force and a uniformly distributed pressure. Molar structure was meshed in a Solid Type 45 and the output data were obtained using the ANSYS software. The practical predictions can be made about the behavior of different restorations materials.


2013 ◽  
Vol 83 (7) ◽  
pp. 1087-1096 ◽  
Author(s):  
A. Ranjbaran ◽  
H. Rousta ◽  
M. O. Ranjbaran ◽  
M. A. Ranjbaran ◽  
M. Hashemi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document