Model Test Study on Embankment Instability Induced by Rapid Drawdown of Water Level at Yellow River Downstream

2010 ◽  
Vol 160-162 ◽  
pp. 750-755
Author(s):  
Yu Kun Zhao ◽  
Ji Hong Yang ◽  
Qing An Li

Rapid drawdown of water level is one of the most important factors that influencing the embankment stability. Based on the principle of geomechanical model test and hydroaulic model test methods, the model test was performed to study Yellow River downstream embankment instability induced by rapid drawdown of water level. The slope models with geometric scale of 1:25, 1:45, 1:62.5 were constructed in the transparent plexiglass model box with 1.6m long, 0.8m wide and 0.6m high. Changes on the slope were recorded during water level decline at different velocity by digital camera and slope tracer etc. The model test results showed that during the rapid drawdown process, there was only small cracks and not slippage in advance; when the water level dropped to a certain height, the sliding distance increased suddenly, which showed that the rate of water level decline was behind the river water, and the slope weight and downslope hydrodynamic pressure by the saturation line in slope body were higher than water lever exceeds the sliding force in a very short period of time, which caused landslide; after the sliding body appearing, slide was continuous and not mutation.

2015 ◽  
Vol 52 (6) ◽  
pp. 485-493 ◽  
Author(s):  
Dae Hyuk Kim ◽  
Inn-Duk Seo ◽  
Key-Pyo Rhee ◽  
Nakwan Kim ◽  
Jin-Hyung Ahn
Keyword(s):  

2018 ◽  
Author(s):  
Alfredo L. Aretxabaleta ◽  
Neil K. Ganju ◽  
Zafer Defne ◽  
Richard P. Signell

Abstract. Water level in semi-enclosed bays, landward of barrier islands, is mainly driven by offshore sea level fluctuations that are modulated by bay geometry and bathymetry, causing spatial variability in the ensuing response (transfer). Local wind setup can have a secondary role that depends on wind speed, fetch, and relative orientation of the wind direction and the bay. Inlet geometry and bathymetry primarily regulate the magnitude of the transfer between open ocean and bay. Tides and short-period offshore oscillations are more damped in the bays than longer-lasting offshore fluctuations, such as storm surge and sea level rise. We compare observed and modeled water levels at stations in a mid-Atlantic bay (Barnegat Bay) with offshore water level proxies. Observed water levels in Barnegat Bay are compared and combined with model results from the Coupled Ocean–Atmosphere–Wave–Sediment Transport (COAWST) modeling system to evaluate the spatial structure of the water level transfer. Analytical models based on the dimensional characteristics of the bay are used to combine the observed data and the numerical model results in a physically consistent approach. Model water level transfers match observed values at locations inside the Bay in the storm frequency band (transfers ranging from 70–100 %) and tidal frequencies (10–55 %). The contribution of frequency-dependent local setup caused by wind acting along the bay is also considered. The approach provides transfer estimates for locations inside the Bay where observations were not available resulting in a complete spatial characterization. The approach allows for the study of the Bay response to alternative forcing scenarios (landscape changes, future storms, and rising sea level). Detailed spatial estimates of water level transfer can inform decisions on inlet management and contribute to the assessment of current and future flooding hazard in back-barrier bays and along mainland shorelines.


2015 ◽  
Vol 74 (4) ◽  
pp. 3315-3332 ◽  
Author(s):  
Ping Lu ◽  
Hangbin Wu ◽  
Gang Qiao ◽  
Weiyue Li ◽  
Marco Scaioni ◽  
...  

In a paper communicated to the Royal Meteorological Society, it was shown that the experimental well at Kew Observatory responded to the lunar fortnightly oscillation of mean level in the River Thames, which is 300 yards from the Observatory at its nearest point. The sensitiveness of the water-level to barometric pressure has also been investigated, and the results have been given in a paper recently read before the Royal Society. The present paper deals with the effects of the short-period tides in the solar and lunar series, S 1 , S 2 , S 3 , S 4 , and M 1 , M 2 , M 3 , M 4 . Two-hourly measurements, both in lunar and solar time, were made on the traces obtained during the first two years, August, 1914-August, 1916, omitting days of very irregular movement. Monthly mean inequalities were then computed. Well marked solar and lunar diurnal variations were found in each month, taking the form of double oscillations with two maxima and two minima during the 24 hours. The range of movement was in each case found to be highly associated with the mean height of the water in the well, the correlation coefficients being 0·89 (lunar) and 0·90 (solar). A similar relation had been previously found to exist in the case of barometric pressure.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Mantu Majumder ◽  
Debarghya Chakraborty ◽  
Vishal Kumawat
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document