Research on Hysteretic Behavior of the Concrete Filled Square CFRP-Steel Tubular (S-CFRP-CFST) Beam-Columns (II): Experimental Results and Analysis

2010 ◽  
Vol 163-167 ◽  
pp. 3575-3579
Author(s):  
Yuan Che ◽  
Qing Li Wang ◽  
Yong Bo Shao ◽  
Xu Zhang

Based on analysis of the hysteretic experimental results of the concrete filled square CFRP-steel tubular (S-CFRP-CFST) beam-columns, it shows that the steel tube and the CFRP material can work concurrently both in longitudinal and transverse directions, the longitudinal strain and the transverse strain at a same point have opposite action. Additionally, the deflection curves of all the specimens are close to half sinusoidal shape. Analysis indicates that there is some strength degradation. The axial compression ratio and strengthening factor of the longitudinal CFRP can enhance the strength and the stiffness of the members and they can also delay the stiffness degradation. However, they will decrease the accumulated energy dissipation of the members. The axial compression ratio is beneficial to seismic behaviors to some extent.

2014 ◽  
Vol 670-671 ◽  
pp. 344-348 ◽  
Author(s):  
Wen Feng Chen ◽  
Xiao Hui Yuan ◽  
Bin Li

Three model specimens of alkali-activated slag concrete filled steel tube (AAS-CFST) with different axial compression ratio and steel ratio were designed and tested in the present study. The seismic performance of the structures were evaluated by testing them with combined lateral constant compression and vertical cyclic loads. The structural performance, such as the testing observations, hysteretic behavior, skeleton curve, stiffness degradation, energy dissipation capacity and ductility performance was discussed in detailed. The results show that all the specimens’ damage were bending deformation mode, and the hysteretic curves are relatively smooth. Test data indicated that increased the axial compression ratio improved the load bearing capacity, initial stiffness.


2014 ◽  
Vol 488-489 ◽  
pp. 704-707
Author(s):  
Ying Wang ◽  
Miao Li ◽  
Jin Hua Xu ◽  
He Fan

Based on finite element analysis o f concrete filled steel tube beam-column joints under the single axial compression ratio and concrete strength, further research was done to analyze the seismic performance of concrete filled steel tube beam-column joints under different axial compression ratio and concrete strength. Beam-column joint which is connected by bolts with welding extended steel sheets at the beam root was analyzed. The results show that with the increase of axial compression ratio, strength and stiffness degradation of the joint accelerated gradually. Axial compression ratio at 0.3, 0.4 are appropriate values for joints specimen, load-displacement hysteresis curve of joint specimens is relatively plump and shows good seismic performance. Chance of concrete strength also had effect on seismic performance of joint specimen, but in contrast it is not so obviously.


2020 ◽  
pp. 136943322095683
Author(s):  
Bin Rong ◽  
Lei Wang ◽  
Ruoyu Zhang

This paper studied the shear behavior of the connections with external stiffening rings between square steel tubular columns and steel beams by experimental, numerical and analytical methods. Two connections with external stiffening rings were tested under low cyclic loading to investigate the effect of axial compression ratio on the shear behavior and capacity of the connection. The test result showed that the change of the axial compression ratio had little effect on the shear capacity of the connection while the ductility of the connection was decreasing with the increase of the axial compression ratio. Seven nonlinear finite element models were designed to investigate the seismic behavior of the connection under cyclic test. Parametric studies are carried out to study the influence of the following parameters on the shearing capacity and deformation in panel zone: the width and the height of the steel tube in panel zone and the thickness of the external stiffening rings. Finally, based on the model considering the post-buckling strength of the web of the steel tube in panel zone, a calculation formula was fitted by the results of the finite element simulation.


2013 ◽  
Vol 438-439 ◽  
pp. 501-504
Author(s):  
Jun Yan Lu ◽  
Wei Wang Pang ◽  
Shuai Chang

Through earthquake simulation experiment of nine regional confined concrete columns with different axial compression ratio, the bearing capacity and seismic behavior of regional confined concrete columns were studied in this paper. Considering the ductility, stiffness, energy-dissipation performance and related factors of regional confined concrete columns under different axial compression ratio, by comparative analysis of the hysteretic behavior of the specimens, the limit of axial compression ratio of regional confined concrete columns is proposed for seismic design.


2013 ◽  
Vol 351-352 ◽  
pp. 901-905
Author(s):  
Zhi Wei Wan ◽  
Yun Zou ◽  
Jie Kong ◽  
Cheng Li

Nonlinear numerical analysis for the stress performance of frame Side Joint is processed in this paper with the finite element software of ABAQUS. Compared with experimental results, numerical analysis results are found to be reasonable. Then the influence of factors such as reinforcement ratios, stirrup ratio and axial compression ratio are contrastively analyzed. The results show that reinforcement ratios have a greater influence on the bearing capacity and hysteretic performance of the structure, but the stirrup ratio and the axial compression ratio have less influence.


2011 ◽  
Vol 71-78 ◽  
pp. 3855-3860
Author(s):  
Xiao Liu ◽  
Min Li

In order to study the bearing capacity and section stress-strain distribute on the steel tube filled with steel-reinforced concrete (STSRC) compression-flexure column, four compression-flexure members of STSRC were tested and theoretical researched. The major parameters of the test were axial compression ratio (n=0.5~0.85). The result of the study showed that: load-deformation() typical curve includes three stages, elastic characteristic, elastic-plastic characteristic, and disruption; Along with the increase of axial compression ratio, the bearing capacity and ductility reduced, but the peak displacement had not change enough; The composite column conformed to plane section, and the larger the axial compression ratio, the further distance of neutral axis of section to the centric axis and closer to the tensile region. ; During the loading process, the steel skeleton in compressive zone yield, but in tensile region never yielded. According to the test results and the limit equilibrium method, the formula for calculating the compression-flexure member of STSRC was established. A good agreement between the calculation results and testing results illustrates, which is feasible to using the calculating formula to calculate the bearing capacity of STSRC.


2018 ◽  
Vol 22 (3) ◽  
pp. 656-669 ◽  
Author(s):  
Hetao Hou ◽  
Weiqi Fu ◽  
Canxing Qiu ◽  
Jirun Cheng ◽  
Zhe Qu ◽  
...  

This study proposes a new type of shear wall, namely, the concrete-filled steel tube composite shear wall, for high performance seismic force resisting structures. In order to study the seismic behavior of concrete-filled steel tube composite shear wall, cyclic loading tests were conducted on three full-scale specimens. One conventional reinforced concrete shear wall was included in the testing program for comparison purpose. Regarding the seismic performance of the shear walls, the failure mode, deformation capacity, bearing capacity, ductility, hysteretic characteristics, and energy dissipation are key parameters in the analysis procedure. The testing results indicated that the bearing capacity, the ductility, and the energy dissipation of the concrete-filled steel tube composite shear walls are greater than that of conventional reinforced concrete shear walls. In addition, the influence of axial compression ratio on the seismic behavior of concrete-filled steel tube composite shear wall is also investigated. It was found that higher axial compression ratio leads to an increase in the bearing capacity of concrete-filled steel tube composite shear walls while a reduction in the ductility capacity.


2012 ◽  
Vol 166-169 ◽  
pp. 1152-1156
Author(s):  
Pei Zhen Xu ◽  
Xia Wu ◽  
Na Zhang ◽  
Hou Jian Zhang ◽  
Huan Sen Xing

The hysteretic behaviors of concrete filled steel tube columns under low cyclic loads were analyzed for verification the accumulated energy dissipation performance. The accumulated ductility coefficient influencing factors, such as slenderness ratio, axial compression ratio and sectional steel ratio, were analyzed. It is indicated that these columns have a better energy dissipation capacity. The energy dissipation capacity decreases with the axial compression ratio increasing, but the influence of slenderness ratio and steel ratio to accumulated ductility coefficient is not clear, this is because the influence of difference loading system.


Sign in / Sign up

Export Citation Format

Share Document