Experimental Study of FRP Rubber Bearing

2010 ◽  
Vol 168-170 ◽  
pp. 1621-1624 ◽  
Author(s):  
Hua Zhang ◽  
Tian Bo Peng ◽  
Jian Zhong Li ◽  
Wen Xiao Li

FRP (fiber reinforce polymer) rubber bearing is a novel isolator improved from traditional laminated rubber bearing. Several specimens were manufactured to study the mechanic properties of FRP rubber bearing. Vertical experiments are conducted to study the compression capacity and compression modulus of the bearing and horizontal experiments are conducted to study the shear modulus and damping property of the bearing. Hysteretic curve and damping ratio of each specimen are derived from the experiments. The results show that the performance of FRP rubber bearing matches that of multiplayer rubber bearing but have good damping capacity.

2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Dervis Volkan Okur ◽  
Seyfettin Umut Umu

Waste automobile tires are used as additives or replacements instead of traditional materials in civil engineering works. In geotechnical engineering, tires are shredded to certain sizes and mixed with soil, especially used as backfill material behind retaining walls or fill material for roadway embankments. Compared to soil, rubber has high damping capacity and low shear modulus. Therefore, it requires the determination of the dynamic characteristics of rubber/soil mixtures. In this paper, the cyclic behavior of recycled tire rubber and clean sand was studied, considering the effects of the amount and particle size of the rubber and confining stresses. A total of 40 stress-controlled tests were performed on an integrated resonant column and dynamic torsional shear system. The effects of the relative size and proportion of the rubber on the dynamic characteristics of the mixtures are discussed. The dynamic properties, such as the maximum shear modulus, strain-dependent shear modulus, and damping ratio, are examined. For practical purposes, simple empirical relationships were formulated to estimate the maximum shear modulus and the damping ratio. The change in the shear modulus and damping ratio with respect to shear strain with 5% of rubber within the mixture was found to be close to the behavior of clean sand.


Energies ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 3193
Author(s):  
Gyeong-Hoi Koo ◽  
Jin-Young Jung ◽  
Jin-Hyeong Lee ◽  
Tae-Myung Shin ◽  
Jin-Young Park

This paper presents a design specification of the small-sized lead inserted laminated rubber bearing (LRB) for application to nuclear component seismic isolation and describes the results of test verification on design performance parameters such as effective horizontal stiffness, equivalent viscous damping ratio, design seismic isolation frequency, and ultimate shear deformation. To do this, two types of LRB, having the same vertical design load of 10 kN but with different shape factors, are designed, fabricated, and tested by the quasi-static procedures. To determine the effective horizontal stiffness and the equivalent damping value from the test results, the new method is proposed and compared with the methods of the ASCE and ISO standards in case that the tangential stiffness curve is not linear in tests. From the comparison between tests and design specifications in the performance parameters, it was found that the design specifications developed in this paper are in a good agreement with the test results. Furthermore, the target design shear deformation limits are confirmed to have sufficient design margins in ultimate shear deformation tests.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Ning Li ◽  
Sisi Zhang ◽  
Guangcheng Long ◽  
Zuquan Jin ◽  
Yong Yu ◽  
...  

Understanding the dynamic behavior of Lightweight Aggregate Self-Compacting Concrete (LWASCC) is of importance to the safety of concrete structures serving in dynamic loading conditions. In this study, the fundamental dynamic properties of LWASCC with three types of LWA were investigated by the impact resonance method. Results show that the dynamic elastic and shear modulus generally decrease with the increase of LWA volume fraction, whereas three types of LWA exert limited influence on dynamic Poisson’s ratio. The dynamic elastic and shear modulus show good linear dependence upon compressive strength. The inclusion of three types of LWA significantly increases the damping ratio, indicating significantly enhanced damping capacity of LWASCC under dynamic loading conditions. The damping ratio of LWASCC is improved by 2.0%, 4.4%, and 2.9% when adding 1% (by volume) expanded clay, rubber, and expanded polystyrene, respectively. The compressive strength and dynamic performances of LWASCC are highly influenced by the intrinsic properties (elastic modulus, damping capacity, wettability, etc.) and geometrical characteristics (size, surface roughness, etc.) of LWA, as well as the LWA-matrix bonding capacity.


2019 ◽  
Vol 22 (2) ◽  
pp. 88-93
Author(s):  
Hamed Khanger Mina ◽  
Waleed K. Al-Ashtrai

This paper studies the effect of contact areas on the transient response of mechanical structures. Precisely, it investigates replacing the ordinary beam of a structure by two beams of half the thickness, which are joined by bolts. The response of these beams is controlled by adjusting the tightening of the connecting bolts and hence changing the magnitude of the induced frictional force between the two beams which affect the beams damping capacity. A cantilever of two beams joined together by bolts has been investigated numerically and experimentally. The numerical analysis was performed using ANSYS-Workbench version 17.2. A good agreement between the numerical and experimental results has been obtained. In general, results showed that the two beams vibrate independently when the bolts were loosed and the structure stiffness is about 20 N/m and the damping ratio is about 0.008. With increasing the bolts tightening, the stiffness and the damping ratio of the structure were also increased till they reach their maximum values when the tightening force equals to 8330 N, where the structure now has stiffness equals to 88 N/m and the damping ratio is about 0.062. Beyond this force value, increasing the bolts tightening has no effect on stiffness of the structure while the damping ratio is decreased until it returned to 0.008 when the bolts tightening becomes immense and the beams behave as one beam of double thickness.


2020 ◽  
Vol 85 (776) ◽  
pp. 1335-1345
Author(s):  
Motoki MISU ◽  
Miyuki SHIMIZU ◽  
Shigeo FUKUDA ◽  
Naoki KATO ◽  
Takeshi FURUHASHI

Sign in / Sign up

Export Citation Format

Share Document